Assessment and Recommendation of Fatigue Design Codes for Stud Shear Connectors in Composite Bridge

강합성 교량 스터드 전단연결재의 피로 설계식 평가 및 제안

  • Published : 2009.10.31

Abstract

The design of the stud shear connector of a bridge structure is mostly controlled by the fatigue resistance not by the strength, if it is followed by AASHTO LRFD Bridge Design Specification. This fatigue design code in AASHTO LRFD is based on the research work done by Slutter and Fisher in 1966. These tests seemingly underestimated the fatigue resistance of connectors because of the inherent eccentricity of the one-face test setup which results additional tension forces to the stud. In addition, the stress ranges were not plotted in the log scale, because it was not known at that time that the fatigue resistance of the welded steel structures has a linear relationship of log scales of stress range and number of loading cycles. This study evaluates the test data produced by the Slutter and Fischer, and plot the data on the proper manner. The fatigue push-out test data produced recently by many other researches all around the world are gathered and analyzed, furthermore a design curve is recommended.

AASHTO LRFD 설계 기준에 따른 합성형 교량 전단연결재 설계는 주로 강도보다는 피로에 의해 지배되는 것으로 알려져 있다. 이 피로 설계는 1966년 Slutter와 Fisher의 연구에 근거하고 있다. 당시의 시험은 1면으로 수행되었기 때문에 편심이 작용하였고, 이로 인하여 전단연결재에 별도의 인장력이 가해지게 되어 피로 강도가 감소되는 결과를 낳은 것으로 보인다. 또한, 피로 S-N 곡선은 응력변동폭과 하중반복 횟수 각각의 로그 스케일에 대하여 선형 관계를 보이는 것으로 Fisher에 의해 후에 밝혀졌으나, 전단연결재의 경우에 대해서만은 아직도 응력변동폭에 로그를 취하지 않고 있다. 이 연구는 현재 미국, 영국, 유럽, 일본에서 사용 중인 피로 설계 곡선을 비교 검토한 결과 미국 설계 기준이 비교적 보수적인 설계를 하고 있음을 확인하였다. 나아가, 당시의 실험 세팅과 데이터를 재분석하고 최근까지 전 세계에 공개된 피로 실험 데이터를 수집하여 분석 비교하고, 이를 바탕으로 적절한 설계식을 추천하고자 한다.

Keywords

References

  1. AASHTO (2007) AASHTO LRFD bridge design specifications, 4th. edition. Washington, D. C
  2. Ahn, J.-H., Kim, S.-H., and Jeong, Y.-J. (2007) Fatigue experiment of stud welded on steel plate for a new bridge deck system. Steel and Composite Structures, Vol. 7, No. 5, pp. 391-404 https://doi.org/10.12989/scs.2007.7.5.391
  3. Badie, S.S., Tadros, M.K., Kakish, H.F., Splittgerber, D.L., and Baishya, M. C. (2002) Large shear studs for composite action in steel bridge girders. Journal of Bridge Engineering ASCE, Vol. 7, No. 3, pp. 195-203 https://doi.org/10.1061/(ASCE)1084-0702(2002)7:3(195)
  4. BSI (2005) BS5400 steel, concrete and composite bridges. Part 5: Code of practice for the design of composite bridges. London, England
  5. BSI (1980) BS5400 steel, concrete and composite bridges. Part 10: Code of practice for fatigue. London, England
  6. CEN (2005) 1993-1-9 Eurocode 3. Design of steel structures, Fatigue
  7. CEN (2005) 1994-2 Eurocode 4. Design of Composite Steel and Concrete Structures., General rules and rules for bridges
  8. Daniels, J.H., and Fisher, J.W. (1968) Fatigue behavior of continuous composite beams. 47th Annual Meeting of the Highway Research Board, National Research Council, Washington, D.C.
  9. Fisher, J.W., Albrecht, P.A., Yen, B.T., Klingerman, D.J., and McNamee, B. M. (1974). Fatigue strength of steel beams with welded stiffeners and attachments. NCHRP Report 147, Highway Research Board, Washington, D. C
  10. Fisher, J.W., Frank, K.H., Hirt, M.A., and McNamee, B.M. (1970) Effect of weldments on the fatigue strength of steel beams. NCHRP Report 102, Highway Research Board, Washington, D. C
  11. Hallam, M.W. (1976) The behavior of stud shear connectors under repeated loading. Research Report No. R281, Schoolof Civil Engineering, The University of Sydney
  12. Hanswille, G., Porsch, M., and Ustundag, C. (2007) Resistance of headed studs subjected to fatigue loading: Part I: Experimental study. Journal of Constructional Steel Research, Vol. 63, No. 4, pp. 475-484 https://doi.org/10.1016/j.jcsr.2006.06.035
  13. Johnson, R.P. (2000) Resistance of stud shear connectors to fatigue. Journal of Constructional Steel Research, Vol. 56, No. 2, pp. 101-116 https://doi.org/10.1016/S0143-974X(99)00082-6
  14. Japanese Society of Steel Construction (1995) Fatigue design recommendations for steel structures. Gihodo, Shuppan
  15. Lee, P.-G., Shim, C.-S., and Chang, S.-P. (2005) Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges. Journal of Constructional Steel Research, Vol. 61, pp. 1270-1285 https://doi.org/10.1016/j.jcsr.2005.01.007
  16. Mainstone, R.J., and Menzies, J.B. (1967) Shear connectors in steelconcrete composite beams for bridges. 1. Static and fatigue tests on push-out specimens. Concrete, Vol. 1, No. 9, pp. 291-302
  17. Mainstone, R.J., and Menzies, J.B. (1967) Shear connectors in steelconcrete composite beams for bridges. Part 2 : Fatigue tests on beams. Concrete, Vol. 1, No. 9, pp. 351-358
  18. Oehlers, D.J. (1990) Deterioration in strength of stud connectors in composite bridge beams. Journal of Structural Engineering ASCE, Vol. 116, No. 12, pp. 3417-3431 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:12(3417)
  19. Roberts, T.M., and Dogan, O. (1998) Fatigue of welded stud shear connectors in steel-concrete-steel sandwich beams. Journal of Constructional Steel Research, Vol. 45, No. 3, pp. 301-320 https://doi.org/10.1016/S0143-974X(97)00070-9
  20. Roderick, J.W., and Ansourian, P. (1976) Repeated loading of composite beams. Research Report No.R280, School of Civil Engineering, The University of Sydney
  21. Slutter, R.G., and Fisher, J.W. (1966) Fatigue strength of shear connectors. Highway Research Record No.147, National Research Council, Washington, D. C.