Effects of Temperature and Curing Systems on Compression Set of NR Compounds at Constant Load

천연고무의 일정 하중 영구압축률에 대한 온도와 가교 시스템의 영향

  • Jin, Hyun-Ho (Department of Advanced Chemicals, Chonnam National University) ;
  • Hong, Chang-Kook (Center for Functional Nano Fine Chemicals (BK21)) ;
  • Cho, Dong-Lyun (School of Applied Chemical Engineering, Chonnam National University) ;
  • Kaang, Shin-Young (School of Applied Chemical Engineering, Chonnam National University)
  • 진현호 (전남대학교 신화학소재공학과) ;
  • 홍창국 (기능성 나노 신화학소재 사업단(BK21)) ;
  • 조동련 (전남대학교 응용화학공학부) ;
  • 강신영 (전남대학교 응용화학공학부)
  • Published : 2009.03.30

Abstract

The effects of temperature and curing systems on the compression set of natural rubber (NR) at constant load were investigated. NR was compounded with various amounts of sulfur and DCP in order to obtain various crosslink densities and curing systems. Compression sets at constant load were compared with those at constant strain. Compression set at constant load was more affected by changes in crosslink density than compression set at constant strain, due to the differences of exerted strain energy density. Compression set of sulfur cured NR under constant load was increased with increasing load and temperature, but the compression set of DCP cured NR was not changed by increasing load and temperature.

천연고무의 일정하중 영구압축률에 온도와 가교시스템이 미치는 영향을 고찰하였다. 다양한 가교시스템과 가교밀도의 고무시편을 만들기 위해 여러 가지 함량의 황과 dicumyl peroxide(DCP)를 사용하여 배합하였으며, 가교된 천연고무의 일정변위 조건에서 측정된 영구압축률과 일정하중에서 측정된 영구압축률의 차이를 비교하였다. 일정하중 영구압축률은 일정변위 영구압축률에 비해 가교밀도의 변화에 따라 상대적으로 큰 차이를 보였으며, 이는 영구압축률 측정 시 공급된 변형에너지가 다르기 때문이다. 또한 일정하중 영구압축률 측정에서 황으로 가교시킨 시편의 경우 하중과 온도증가에 따라 영구압축률이 크게 증가하였고, 이에 반해 DCP로 가교시킨 시편의 경우 하중과 온도증가에 큰 영향을 받지 않았다.

Keywords

References

  1. J. A. Shaw, A. S. Jones, and A. S. William, 'Chemorheological Response of Elastomers at Elevated Temperature: Experiment and Simulations', J. Mech. Phys. Solids, 53, 2758 (2005) https://doi.org/10.1016/j.jmps.2005.07.004
  2. C. Joubert, A. Michel, L. Choplin, and P. Cassagnau, 'Influence of the Crosslink Network Structure on Stress-Relaxation Behavior: Viscoelstic Modeling of the Compression Set Experiment', J. Polym. Sci., 41, 1779 (2003) https://doi.org/10.1002/polb.10530
  3. A. N. Gent, 'Elasticity' in 'Engineering with Rubber: How to Design Rubber Components', ed. by A. N. Gent, Hanser Publishers, New York, 1992
  4. L. Gonzalez, A. Rodriguez, A. Marcos-Fernandez, J. L. Valentin, and A. Fernandez-Torres, 'Effect of Network Heterogeneities on the Physical Properties of Nitrile Rubbers Cured with Dicumyl Peroxide', J. Appl, Polym. Sci., 103, 3377 (2007) https://doi.org/10.1002/app.24696
  5. P. J. Flory and J. Rehner, J. Chem. Phys., 11, 521 (1943) https://doi.org/10.1063/1.1723792
  6. S. Toki, I. Sics, S. Ran, L. Liu, and B. S. Hsiao, 'Molecular Orientation and Structural Development in Vulcanized Polyisoprene Rubbers during Uniaxial Deformation by in Situ Synchrotron X-ray Diffraction', Polymer, 44, 6003 (2003) https://doi.org/10.1016/S0032-3861(03)00548-2
  7. Sung-Hyo Chough and Dong-Ho Chang, 'Kinetics of Sulfur Vulcanization of NR, BR, SBR, and Their Blends Using a Rheometer and DSC', J. Appl. Polym. Sci., 61, 449 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<449::AID-APP7>3.0.CO;2-I
  8. S. K. Bhatnagar and S. Banerjee, 'Cross-link Efficiency of Styrene-Butadiene Rubber with Dicumyl Peroxide and Evaluation of Interaction Parameter', Die Makromolekulare Chemie, 109, 217 (1967) https://doi.org/10.1002/macp.1967.021090119
  9. I. Franta, 'Elastomers and Rubber Compounding Materials', Elsevier, NY, 1989