Study on the Polymerization Characteristics of Isoprene through Nitroxide Mediated Controlled/"living" Radical Polymerization Techniques

Nitroxide 매개 리빙라디칼 중합법에 의한 isoprene의 중합특성에 관한 연구

  • Hong, Sung-Chul (Department of Nano Science and Technology, Sejong University)
  • Published : 2009.03.30

Abstract

In this study, investigation on the polymerization characteristics of isoprene through nitroxide mediated controlled/"living" radical polymerization techniques was attempted. In the presence of acetol, linear increase of isoprene conversion with time and low polydispersities of the resulting polymers ($M_w/M_n$ < 1.5) were observed, which suggest successful controlled/"living" radical polymerization of isoprene. The microstructure of the resulting polyisoprene was composed of $\sim$ 22% of 3, 4, $\sim$30% of 1, 4-cis and $\sim$ 48% of 1, 4-trans. The optimum polymerization temperature was 145 $^{circ}C$, below which no significant polymerization behavior was observed. Non-cyclic nitroxide, such as di-tert-butyl nitroxide (DTBN) could not mediate the polymerization, whereas cyclic nitroxides (2, 2, 6, 6-tetramethyl-1-peperidine 1-oxyl (TEMPO) and 4-oxo-2, 2, 6, 6-tetramethyl-1-peperidine 1-oxyl (oxoTEMPO)) were successfully employed for the polymerization. However, isoprene dimerization reaction through Diels-Alder process was also observed at the given polymerization condition, which afforded a significant amount of limonene. Isoprene thermal autoinitiation was also possible, which was, however, considered to be not significant under the given polymerization condition.

본 논문에서는 nitroxide 매개 리빙라디칼 중합법을 이용한 isoprene의 중합 특성에 관하여 연구하였다. 중합 첨가제로 acetol이 첨가된 경우, 생성되는 고분자의 분자량이 전환율에 따라 직선적으로 증가하고, 제조된 고분자의 분자량 분포값이 1.5 이하의 값을 보임으로써, 성공적인 리빙라디칼 중합이 이루어졌음을 알 수 있었다. 제조된 polyisoprene은 약 22%의 3, 4구조, 약 30%의 1, 4-cis구조, 약 48%의 1, 4-trans 구조로 구성되어 있었다. 중합은 145 $^{circ}C$에서 최선의 결과를 보였으며, 이보다 낮은 온도에서는 진행되지 않았다. Nitroxide의 경우, non-cyclic nitroxide인 di-tert-butyl nitroxide (DTBN)의 경우 리빙라디칼 중합을 매개하지 못하였으나, 2, 2, 6, 6-tetramethyl-1-peperidine 1-oxyl (TEMPO)와 4-oxo-2, 2, 6, 6-tetramethyl-1-peperidine 1-oxyl (oxoTEMPO)의 경우 성공적으로 리빙라디칼 중합을 매개하였다. 그러나, 주어진 중합조건 내에서 일부 isoprene은 Diels-Alder 이량화 반응(dimerization)에 의하여 고분자가 아닌 limonene 등으로 전환되는 것으로 관찰되었다. 주어진 중합조건하에서 isoprene의 자동열개시 반응도 가능하였으나, 별도의 중합개시제를 사용할 경우 그 정도는 무시할 수 있을 정도의 양인 것으로 판단되었다.

Keywords

References

  1. M. Fontanille and Y. Gnanou, 'Anionic Polymerization of Vinyl and Related Monomers'. In Macromolecular Engineering, ed. by K. Matyjaszewski, Y. Gnanou and L. Leibler, 1st ed., p. 7, Wiley-VCH Verlag GmbH, Weinheim, 2007
  2. W. A. Braunecker and K. Matyjaszewski, 'Controlled/living radical polymerization: Features, developments, and perspectives', Prog. Polym. Sci., 32, 93 (2007) https://doi.org/10.1016/j.progpolymsci.2006.11.002
  3. K. Matyjaszewski, 'Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties', Prog. Polym. Sci., 30, 858 (2005) https://doi.org/10.1016/j.progpolymsci.2005.06.004
  4. N. Hadjichristidisa, H. Iatroua, M. Pitsikalisa, and J. Mays, 'Macromolecular architectures by living and controlled/living polymerizations', Prog. Polym. Sci., 31, 1068 (2006) https://doi.org/10.1016/j.progpolymsci.2006.07.002
  5. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, 'Narrow molecular weight resins by a free-radical polymerization process', Macromolecules, 26, 2987 (1993) https://doi.org/10.1021/ma00063a054
  6. C. J. Hawker, A. W. Bosman, and E. Harth, 'New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations', Chem. Rev., 101, 3661 (2001) https://doi.org/10.1021/cr990119u
  7. K. Matyjaszewski and J. Xia, 'Atom Transfer Radical Polymerization', Chem. Rev., 101, 2921 (2001) https://doi.org/10.1021/cr940534g
  8. M. Kamigaito, T. Ando, and M. Sawamoto, 'Metal- Catalyzed Living Radical Polymerization', Chem. Rev., 101, 3689 (2001) https://doi.org/10.1021/cr9901182
  9. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, and S. H. Thang, 'Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process', Macromolecules, 31, 5559 (1998) https://doi.org/10.1021/ma9804951
  10. J. Wootthikanokkhan, M. Peesan and P. Phinyocheep, 'Atom transfer radical polymerizations of (meth)acrylic monomers and isoprene', Eur. Polym. J., 37, 2063 (2001) https://doi.org/10.1016/S0014-3057(01)00076-3
  11. V. Jitchum and S. b. Perrier, 'Living Radical Polymerization of Isoprene via the RAFT Process', Macromolecules, 40, 1408 (2007) https://doi.org/10.1021/ma061889s
  12. B. Keoshkerian, M. Georges, M. Quinlan, R. Veregin, and B. Goodbrand, 'Polyacrylates and Polydienes to High Conversion by a Stable Free Radical Polymerization Process: Use of Reducing Agents', Macromolecules, 31, 7559 (1998) https://doi.org/10.1021/ma971686r
  13. D. Benoit, E. Harth, P. Fox, R. M. Waymouth, and C. J. Hawker, 'Accurate Structural Control and Block Formation in the Living Polymerization of 1,3-Dienes by Nitroxide-Mediated Procedures', Macromolecules, 33, 363 (2000) https://doi.org/10.1021/ma991187l
  14. J. K. Wegrzyn, T. Stephan, R. Lau, and R. B. Grubbs, 'Preparation of Poly(ethylene oxide)-block- poly(isoprene) by Nitroxide-Mediated Free Radical Polymerization from PEO Macroinitiators', J. Polym. Sci., Part A: Polym. Chem., 43, 2977 (2005) https://doi.org/10.1002/pola.20756
  15. R. B. Grubbs, J. M. Dean, M. E. Broz, and F. S. Bates, 'Reactive Block Copolymers for Modification of Thermosetting Epoxy', Macromolecules, 33, 9522 (2000) https://doi.org/10.1021/ma001414f
  16. M. K. Georges, G. K. Hamer, and N. A. Listigovers, 'Block Copolymer Synthesis by a Nitroxide- Mediated Living Free Radical Polymerization Process', Macromolecules, 31, 9087 (1998) https://doi.org/10.1021/ma970758b
  17. H. Sato and Y. Tanaka, '1H-NMR study of polyisoprenes', J. Polym. Sci., Part A: Polym. Chem., 17, 3551 (1979) https://doi.org/10.1002/pol.1979.170171113