Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods

3차원 지표레이다와 전기비저항 탐사를 이용한 도심지 유적 조사

  • Papadopoulos, Nikos (Korea Institute of Geoscience and Mineral Resources (KIGAM), Mineral Resources Research Division, Exploration Geophysics and Mining Engineering Department) ;
  • Sarris, Apostolos (Laboratory of Geophysical-Satellite Remote Sensing & Archaeo-environment, Institute for Mediterranean Studies, Foundation of Research and Technology-Hellas) ;
  • Yi, Myeong-Jong (Korea Institute of Geoscience and Mineral Resources (KIGAM), Mineral Resources Research Division, Exploration Geophysics and Mining Engineering Department) ;
  • Kim, Jung-Ho (Korea Institute of Geoscience and Mineral Resources (KIGAM), Mineral Resources Research Division, Exploration Geophysics and Mining Engineering Department)
  • ;
  • ;
  • 이명종 (한국지질자원연구원 광물자원연구본부) ;
  • 김정호 (한국지질자원연구원 광물자원연구본부)
  • Published : 2009.02.28

Abstract

Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and highresistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

현재 진행되고 있는 광범위한 도시화는 종종 무분별한 토목건설을 수반하게 되며, 이는 도심지에 묻혀있는 고고학적 가치가 있는 중요한 역사적 유구들을 위협하기도 한다. 도심지 지역에 묻혀있는 고고학적 유구들을 파악하는 데에는 지표레이다와 전기비저항 탐사가 매우 유력한 방법이며, 이 논문에서는 3차원 전기비저항 탐사와 3차원 지표레이다 탐사에 의한 고고학적 조사를 위한 복합물리탐사의 3가지 사례를 설명한다. 조사지역은 그리스 크레타섬 내 가장 번화한 두 도시의 역사적 도심지에 위치해 있다. 이 지역에서 평행한 측선들로 이루어진 격자망의 측선을 따라 고밀도의 3차원 전기비저항과 3차원 지표레이다 탐사자료의 획득이 이루어졌다. 먼저, 전기비저항 탐사자료의 3차원 역산을 통하여 하부 전기비저항 구조를 획득하였으며, 지표레이다 탐사자료는 탐사자료로부터 최대한의 정보를 도출하기 위하여 특정 필터를 적용하는 등 체계적인 자료처리 과정을 거쳤다. 이로부터 최종적으로 지하하부 물성의 3차원적인 변화를 나타내는 수평 절개 단면 영상을 획득하였으며, 이와 같이 획득한 3차원 지표레이다와 전기비저항 영상들은 도심지 지역의 복잡한 하부 물성을 영상화하는데 매우 중요한 역할을 담당하였다. 즉, 강한 레이다 반사파와 고비저항 이상을 나타내는 부분은 고고학적 유구로서 해석되었으며, 탐사 후에 수행한 일부 지역에서의 발굴결과와 매우 잘 일치하였다. 이와 같은 사례는 도심지 지역에서의 기반시설물의 설계 및 건설 단계에서 고고학적으로 의미가 있는 중요한 병역의 도출 및 건설공사 수행 이전에 고고학적 발굴에 대한 가이드라인을 제공하는 등 도심지역 고고학적 물리탐사에서 전기비저항 탐사와 지표레이다 탐사가 매우 높은 적용성이 있음을 잘 보여주고 있다.

Keywords

References

  1. Athanasiou,E.,Tsourlos,P.,Vargemezis,G.,Papazachos,C.,andTsokas,G.N.,2007, Non-destructive DC resistivity surveying using flat-base electrodes: Near Surface Geophysics, 5, 263–272
  2. Atzemoglou, A., Tsourlos, P., and Pavlides, S., 2003, Investigation of the Tectonic Structure of the NW Part of the Amynteon Basin (NW Greece) by means of a Vertical Electrical Sounding (VES) survey: Journal of the Balkan Geophysical Society, 4, 188–201
  3. Chávez, R. E., Cámara, M. E., Tejero, A., Barba, L., and Manzanilla, L., 2001,Site Characterization by Geophysical Methods in the Archaeological Zone of Teotihuacan, Mexico: Journal of Archaeological Science, 28, 1265–1276. doi: 10.1006/jasc.2000.0627
  4. Conyers, L. B., 2006, Innovative ground-penetrating radar methods for archaeological mapping: Archaeological Prospection, 13, 139–141. doi: 10.1002/arp.282
  5. Dahlin, T., and Owen, R., 1998, Geophysical investigations of alluvial aquifers in Zimbabwe. Proceedings of the IV Meeting of the Environmental and Engineering Geophysical Society (European Section), Sept. 1998, Barcelona, Spain, 151–154
  6. Drahor, M. G., 2006, Integrated geophysical studies in the upper part of Sardisarchaeological site, Turkey: Journal of Applied Geophysics, 59, 205–223. doi: 10.1016/j.jappgeo.2005.10.008
  7. Gerolla, G., 1905, Monumenti Veneti nell' isola di Creta, Venice, 2b, 125–127
  8. Goodman, D., 1994, Ground-pentrating radar simulation in engineering andarchaeology: Geophysics, 59, 224–232. doi: 10.1190/1.1443584
  9. Goodman, D., Nishimura, Y., and Rogers, J. D., 1995, GPR time slices inarchaeological prospection: Archaeological Prospection, 2, 85–89
  10. Griffiths, D. H., and Barker, R. D., 1994, Electrical Imaging in Archaeology:Journal of Archaeological Science, 21, 153–158. doi: 10.1006/jasc. 1994.1017
  11. Leckebusch, J., 2003, Ground-Penetrating Radar: A Modern Three-Dimensional Prospection Method: Archaeological Prospection, 10, 213–240. doi: 10.1002/arp.211
  12. Loke, M. H., and Barker, R. D., 1996, Practical Techniques for 3D ResistivitySurveys and Data Inversion: Geophysical Prospecting, 44, 499–523. doi: 10.1111/j.1365-2478.1996.tb00162.x
  13. L\ddot{u}ck, E., Eisenreich, M., Spangenberg, U., and Christl, G., 1997, A Note on Geophysical Prospection of Archaeological Structures in Urban Contexts in Potsdam (Germany): Archaeological Prospection, 4, 231–238. doi: 10.1002/(SICI)1099-0763(199712)4 : 4<231::AID-ARP 87>3.0.CO;2-6
  14. Leucci, G., Greco, F., Giorgi, L. D., and Mauceri, R., 2007, Three-dimensionalof seismic refraction tomography and electrical resistivity tomography survey in the castle of Occhiola (Sicily, Italy): Journal of Archaeological Science, 34, 233–242. doi: 10.1016/j.jas.2006.04.010
  15. Leucci, G., and Negri, S., 2006, Use of ground penetrating radar to map subsurface archaeological features in an urban area: Journal of Archaeological Science, 33, 502–512. doi: 10.1016/j.jas.2005.09.006
  16. Negri, S., Leucci, G., and Mazzone, F., 2008, High resolution 3D ERT to help GPR data interpretation for researching archaeological items in a geologically complex subsurface: Journal of Applied Geophysics, 65, 111–120. doi: 10.1016/j.jappgeo.2008.06.004
  17. Papadopoulos, N.G., Tsourlos, P., Tsokas, G.N., and Sarris, A., 2007, Efficient ERT Measuring and Inversion Strategies for 3D Imaging of Buried Antiquities: Near Surface Geophysics, 6, 349–362
  18. Ramirez, A., Daily, W., Binley, A., and Labrecque, D., 1996, Tank leak detection using electrical resistance methods. Symposium on the application of geophysics to engineering and environment, Keystone CO, April 28–May 1, 1996
  19. Sarris, A., Dunn, R. K., Rife, J. L., Papadopoulos, N., Kokkinou, E., and Mundigler, C., 2007, Geological and geophysical investigations in the Roman cemetery at Kenchreai (Korinthia), Greece: Archaeological Prospection, 14, 1–23. doi: 10.1002/arp.280
  20. Scollar, I., Weinder, B., and Segeth, K., 1986, Display of archaeological magnetic data: Geophysics, 51, 623–633. doi: 10.1190/1.1442116
  21. Stummer, P., 2003, New Developments in Electrical Resistivity Imaging. Dissertation submitted to the Swiss Federal of Institute of Technology, Zurich
  22. Tsokas, G.N., Giannopoulos, A., Tsourlos, P., Vargemezis, G., Tealby, J.M.,Sarris, A., Papazachos, C.B., and Savopoulou, T., 1994, A Large Scale Geophysical Survey in the Archaeological Site of Europos (northern Greece): Journal of Applied Geophysics, 32, 85–98. doi: 10.1016/0926-9851(94)90011-6
  23. Tsokas, G. N., Tsourlos, P. I., Vargemezis, G., and Novack, M., 2008, Nondestructive Electrical Resistivity Tomography for Indoor Investigation:the Case of Kapnikarea Church in Athens: Archaeological Prospection, 15, 47–61. doi: 10.1002/arp.321
  24. Tsourlos, P., and Ogilvy, R., 1999, An algorithm for the 3-D Inversion of Tomographic Resistivity and Induced Polarization data: Preliminary Results: Journal of the Balkan Geophysical Society, 2, 30–45
  25. Vafidis, A., Economou, N., Ganiatsos, Y., Manakou, M., Poulioudis, G., Sourlas, G., Vrontaki, E., Sarris, A., Guy, M., and Kalpaxis, Th., 2005, Integrated archaeological studies at ancient Itanos (Greece): Archaeological Science, 32, 1023–1036. doi: 10.1016/j.jas.2005.02.007
  26. Vaughan, C. J., 1986, Ground-penetrating radar surveys in archaeologicalinvestigations: Geophysics, 51, 595–604. doi: 10.1190/1.1442114
  27. Xu, B., and Noel, M., 1993, On the Completeness of Data Sets with Multielectrode Systems for Electrical Resistivity Survey: Geophysical Prospecting, 41, 791–801. doi: 10.1111/j.1365-2478.1993.tb00885.x