Fomitopsis pinicola 균사체로부터 Laccase의 최적생산조건

Optimal Conditions for the Laccase Production from Fomitopsis pinicola Mycelia

  • 박나오미 (동국대학교 과학기술대학 생명공학과) ;
  • 박상신 (동국대학교 과학기술대학 생명공학과)
  • 발행 : 2009.03.28

초록

소나무잔나비버섯(Fomitopsis pinicola) 균사로부터 laccase를 생산하기 위한 최적 배양조건을 조사하였다. 합성 배지 중 MCM이 가장 높은 laccase활성을 나타내었으며, MCM의 조성을 2% dextrose, 0.4% peptone, 0.05% $NaH_2PO_4{\cdot}H_2O$, 0.05% $CaCl_2$로 각각 대체하였을 때 효소활성이 가장 우수하였다. 따라서 F. pinicola로부터 laccase를 생산하기 위한 최적 배지조건은 2% dextrose, 0.4% peptone, 0.05% $NaH_2PO_4{\cdot}H_2O$, 0.05% $CaCl_2$이다. 이상의 배지를 사용하여 $25^{\circ}C$에서 8일 동안 배양하였을 때 효소의 활성이 최대에 도달함을 확인하였다. ABTS를 기질로 사용한 activity staining을 통해 소나무잔나비버섯 균사체의 laccase 활성의 분자량이 43-55 kDa임을 확인하였으며, 배양액 중의 최적 pH와 온도는 각각 pH 3.0과 $80^{\circ}C$이었다.

The culture conditions to maximize the production of laccase (EC 1.10.3.2) from Fomitopsis pinicola mycelia were investigated. Among the tested media for the enzyme production, mushroom complete medium (MCM ; 2% dextrose, 0.2% peptone, 0.2% yeast extract, 0.05% $KH_2PO_4$, and 0.05% $MgSO_4{\cdot}7H_2O$) showed the highest activity of the enzyme. To optimize the culture condition for the laccase activity, influence of various carbon and nitrogen sources was investigated in MCM. Among various carbon and nitrogen sources, 2% glucose and 0.4% peptone showed the highest production of the enzyme, respectively. For the phosphorus and inorganic source, 0.05% $NaH_2PO_4$ and 0.05% $CaCl_2$ were best for the enzyme activity. The enzyme production was reached to highest level after the cultivation for 8 days at $25^{\circ}C$. Native polyacrylamide gel electrophoresis (PAGE) followed by the laccase activity staining using 2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate was performed to identify the laccase under culture conditions studied. Zymogram analysis of the culture supernatant showed a laccase band with molecular mass of 52 kDa. The optimum pH and temperature for the enzyme activity were $80^{\circ}C$ and pH 3.0.

키워드

참고문헌

  1. Ander, P. and K. E. Eriksson. 1976. The importance of phenoloxidase activity in lignin degradation by the white-rot fungus Sporotrichum pulberulentum. Arch. Microbiol. 109: 1-8 https://doi.org/10.1007/BF00425105
  2. Arora, D. S. and P. K. Gill. 2000. Laccase production by some white rot fungi undεr different nutritional conditions. Bioresource Technol. 73: 283-285 https://doi.org/10.1016/S0960-8524(99)00141-8
  3. Bollg, J. M. and A. Leonowicz. 1984. Comparative studies of extracelluar fungal laccases. Appl. Environ. Microbiol. 48: 849-854
  4. Burnpus, J. A. 1989. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 55(1): 154-158
  5. Cambria, M. T, A. Cambria, S. Ragusa, and E. Rizzarelli. 2000. Production, Purificatiopn, and Properties of an Extracellular Laccase from Rigidoporus lignosus. Protein Expression and Purification 18: 141-147 https://doi.org/10.1006/prep.1999.1126
  6. Diana, L., B. Henning, P. Thilo, N. Manfred, G B. Ralf, and Z. Holger. 2005. Laccase of Pleurotus sapidus Characterization and Cloning. J. Agric. Food Chem. 53: 9498-9505 https://doi.org/10.1021/jf052012f
  7. Dong, J. L., Y. W. Zhang, R. H. Zhang, W. Z. Huang, and Y. Z. Zhang. 2005. Influence of culture conditions on laccase production and isozyme patterns in the white-rot fungus Trametes gallica. J. Basic Microbiol. 45: 190-198 https://doi.org/10.1002/jobm.200410511
  8. Eggert, C, U. Temp, J. F. Dean, and K. E. Eriksson. 1996. A fungal metabolite mediates degradation of nonphenolic lignin structures and synthetic lignin by laccase. FEBS letter. 391: 144-148 https://doi.org/10.1016/0014-5793(96)00719-3
  9. Ferrey, M. L., W. C. Koskinen, R. A. Blanchette, and T. A Burnes. 1994. Mineralization of alachlor by lignin-degrading fungi. Can. J. Microbiol. 40(9): 795-798 https://doi.org/10.1139/m94-126
  10. Field, J. A., E. De Jong, G. Feijoo-Costa, and J. A. M. De Bont. 1993. Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol. 11: 44-49 https://doi.org/10.1016/0167-7799(93)90121-O
  11. Gianfreda, L., F. Xu, and J. M. Bollag. 1999. Laccase : A useful group of laccase oxidoreductive enzymes. Bioremediation J. 3: 1-25 https://doi.org/10.1080/10889869991219163
  12. Higuchi, T. 1990. Lignin biochemistry Biosynthesis and biodegradation. Wood Sci. Technol. 24: 23-63 https://doi.org/10.1007/BF00225306
  13. Jager, A., S. Croan, and T. K. Kirk. 1985. Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl. Environ. Microbiol. 50(5): 1274-1278
  14. Keller, A. C., M. P. Maillard, and K. Hostettmann. 1996. Antimicrobial steroids from the fungus Fomitopsis pinicola. Phytochemistry'.41(4): 1041-1046 https://doi.org/10.1016/0031-9422(95)00762-8
  15. Kweon, M. H., H. Jang, W. J. Lim, H. I. Chang, C. W. Kim, H. C. Yang, H. J. Hwang, and H. C. Sung. 1999. Anticomplementary properties of polysaccharides isolated from fruit bodies of mushroom Pleurotus osteatus. J. Microbiol. Biotechnol. 9: 450-456
  16. Lee, S. I., J. S. Kim, S. H. Oh, K. Y. Park, H. G Lee, and S. D. Kim. 2008. Antihyperglycemic effect of Fomitopsis pinicola extracts in streptozotocin-induced diabetic rats. J. Med. Food. 11(3): 518-524 https://doi.org/10.1089/jmf.2007.0155
  17. Mikiashvili, N., V. Elisashvili, S. Wasser, and E. Neve. 2005. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnol. Lett. 27: 955-959 https://doi.org/10.1007/s10529-005-7662-x
  18. Nagai, M., T. Sato, H. Watanabe, K. Saiio, M. Kawata, and H. Enei. 2002. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. MIicrobiol biogechnol. 60: 327-335 https://doi.org/10.1007/s00253-002-1109-2
  19. Niclini, L., C. V. Hunolstein, and N. Orsi. 1986. Production of laccase A and B by a mutant strain of Trametes vesicolor. J. Gen. Appl. Microbiol. 32: 185-191 https://doi.org/10.2323/jgam.32.185
  20. Nonaka, T., H. Ishikawa, Y. Tsumuraya, Y. Hashimoto, and N. Dohmae. 1995. Characterization of a thermostable lysinspecific metallopeptidase from the fruiting bodies of a basidiomycete, Grifola fromdosa. J. Biochem. (Tokyo) 118: 1014-1020 https://doi.org/10.1093/jb/118.5.1014
  21. Park, E. H. and K. H. Yoon. 2003. Characterization of Laccase Purified from Korean Pycnoporus cinnabarinus SCH-3. J. Miocrobiol. 31(2): 59-66 https://doi.org/10.4489/KJM.2003.31.2.059
  22. Park, K. M. and S. S. Park. 2006. Optimal Production and Characterization of Laccase from Fomitella fraxinea Mycelia. Kor. J. Microbiol. Biotechnol. 34(3): 228-234
  23. Pease, E. A., A. Andrawis, and M. Tieb. 1989. Manganese dependent peroxidase from Phanerochaete chrysosporium. J. Biol. Chem. 264(23): 13531-13535
  24. Perry, C. R., M. Smith, C. H. Britnell, D. A. Wood, and C. F. Thurston. 1993. Identification of two laccase genes in the culticated mushroom Agaricus bisporus. J. Gen. Microbiol. 139: 1209-1218
  25. Prerez, J., J. Martinez, and T. de 1a Rubia. 1996. Purification and partial characterization of a laccase from the white rot fungus Phanerochate favido-alba. Appl. Environ. Microbiol. 62: 4263-4267
  26. Purnomo, A. S., I. Kamei, and R. Kamei. 2008. Degradation of 1. 1. 1-trichloro-2, 2-bis (4-chlorophenly) ethane (DDT) bt brown-rot fungi. J. Biosci. Bioeng. 105(6): 614-621 https://doi.org/10.1263/jbb.105.614
  27. Ren, G. X. Y. Liu, H. K. Zhu, S. Z. Yang, and C. X. Fu. 2006. Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia. 77(5): 408-410 https://doi.org/10.1016/j.fitote.2006.05.004
  28. Sadhasivam, S., S. Savitha, K. Swaminathan, and F. H. Lin. 2008. Production, Purification and characterization of midredox potential laccse from a newly isolated Trichodemza harzianum WL1. Process biochemistry. 43: 736-742 https://doi.org/10.1016/j.procbio.2008.02.017
  29. Salony, S. Mishra, and V S: Bisaria. 2006. Production and characterization of laccse from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes. Appl. Microbiol Biotechnol. 71: 646-653 https://doi.org/10.1007/s00253-005-0206-4
  30. Sayadi, S. and R. Ellouz. 1995. Roles of lignin peroxidse and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Appl. Environ. Microbiol. 61(3): 1098-1103
  31. Solano, F., E. Garicia, D. Perez, and A. Schez-Amat. 1997. Isolation and characterization of strain MMB-1(CECT 4803), a novel melanogenic marine bactenum. Appl. Environ. Microbiol. 63: 3499-3506
  32. Solomon, E. I., F. Xu, W: Shin, S. H. Brown, J. A. Wahleithner, and U. M. Sundaram, 1996. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Machoukin Chem. Rev. 96: 3563-2565 https://doi.org/10.1016/0167-4838(95)00210-3
  33. Ullrich, R., M. Huong Le, N. L. Dung, and M. Hofrichter. 2005. Laccase from the medicinal mushroom Agaricus blazei : Production, purification and characterization. Appl. Microbiol. Biotechnol. 67: 357-363 https://doi.org/10.1007/s00253-004-1861-6
  34. Wang, J. W., J. H. Wu, W. Y. Huang, and R. X. Tan, 2005. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresource Technol. 97: 786-789 https://doi.org/10.1016/j.biortech.2005.03.025
  35. Xiao, Y. Z., X. M. Tu, 1. Wang, M. Zhang, Q. Cheng, W. Y. Zerig, and Y. Y. Shi. 2003. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH 28-2. Appl. Microbiol. Biotechnol. 60: 700-707
  36. Yoon, J. J., C. J. Cha, Y. S. KIm, and W. KIm. 2008. Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnol. Lett. 30(8): 1373-1378 https://doi.org/10.1007/s10529-008-9715-4