DOI QR코드

DOI QR Code

IR Absorption Property in Nano-thick Nickel Silicides

저온에서 형성된 니켈실리사이드의 적외선 흡수 특성

  • Han, Jeung-Jo (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Oh-Sung (Department of Materials Science and Engineering, University of Seoul) ;
  • Choi, Young-Youn (Department of Materials Science and Engineering, University of Seoul)
  • 한정조 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과) ;
  • 최용윤 (서울시립대학교 신소재공학과)
  • Published : 2009.04.27

Abstract

We fabricated thermally evaporated 30 nm-Ni/(20 nm or 60 nm)a-Si:H/Si films to investigate the energy-saving property of silicides formed by rapid thermal annealing (RTA) at temperatures of $350^{\circ}C$, $450^{\circ}C$, $550^{\circ}C$, and $600^{\circ}C$ for 40 seconds. A transmission electron microscope (TEM) and a high resolution X-ray diffractometer (HRXRD) were used to determine the cross-sectional microstructure and phase changes. A UVVIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were employed for near-IR and middle-IR absorbance. Through TEM and HRXRD analysis, for the nickel silicide formed at low temperatures below $450^{\circ}C$, we confirmed columnar-shaped structures with thicknesses of $20{\sim}30\;nm$ that had ${\delta}-Ni^2Si$ phases. Regarding the nickel silicide formed at high temperatures above $550^{\circ}C$, we confirmed that the nickel silicide had more than 50 nm-thick columnar-shaped structures with a $Ni_{31}Si_{12}$ phase. Through UV-VIS-NIR analysis, nickel silicide showed almost the same absorbance in the near IR region as well as ITO. However, in the middle IR region, the nickel silicides with low temperature showed similar absorbance to those from high temperature silicidation.

Keywords

References

  1. G. Makaka, E. L. Meyer and M. McPherson, Renewable Energy, 33, 1959 (2008) https://doi.org/10.1016/j.renene.2007.11.014
  2. T. Stempel, M. Aggour, K. Skorupska, A. Munoz and H. J. Lewerenz, Electrochem. Commu., 10, 1184 (2008) https://doi.org/10.1016/j.elecom.2008.05.041
  3. B. Kongtragool, S. Wongwises, Sol. Energy, 82, 493 (2008) https://doi.org/10.1016/j.solener.2007.12.005
  4. S. Y. Cho, M J. Lee, M. S. Kim, S. R. Lee, Y. K. Kim, D. H. Lee, C. W. Lee, K. H. Cho and J. H. Chung, J. Dermatological Sci., 50, 123 (2008) https://doi.org/10.1016/j.jdermsci.2007.11.009
  5. M. Nakazono, T. Hino, K. Zaitsu, J. Photochem. Photobio. A: Chem., 186, 99 (2007) https://doi.org/10.1016/j.jphotochem.2006.07.017
  6. R. M. Stanley, The Lesna Lighting Handbook, 9th ed., p.152, Illuminating Engineering, New York, U.S.A. (2000)
  7. C. K. Ji, Kor. Inst. Illumin. Elec. Install. Eng., 15, 1 (2001)
  8. A. Kondilis, E. Aperathitis and M. Modreanu, Thin Solid Films, 516, 8073 (2008) https://doi.org/10.1016/j.tsf.2008.04.014
  9. E. Hartmann, P. Boher, C. Defranoux, L. Jolivet and M. O. Martin, J. Lumin., 110, 407 (2004) https://doi.org/10.1016/j.jlumin.2004.08.039
  10. J. W. Mayer, S. S. Lau, Electronic Materials Science : For Integrated Circuits in Si and GaAs, 1st ed., p.287-289, Macmillan Publishing Company, New York, U.S.A., (1990)
  11. D. B. Williams, C. B. Carter, Transmission Electron Microscopy BasicsI, 1st ed., p.152-170, Plenum Press, New York, U.S.A., (1996)
  12. K. J. Yoon, O. S. Song and J. J. Han, J. Kor. Inst. Met. Mater., 46, 11 (2008)