DOI QR코드

DOI QR Code

LiH2PO4 Crystal as a Solid Electrolyte

고체 전해질로서의 LiH2PO4 결정

  • Lee, Kwang-Sei (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Cho, Joong-Seok (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Geum-Chae (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Jeon, Min-Hyon (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • 이광세 (인제대학교 나노시스템공학과, 나노 매뉴팩처링 센터) ;
  • 조중석 (인제대학교 나노시스템공학과, 나노 매뉴팩처링 센터) ;
  • 김금채 (인제대학교 나노시스템공학과, 나노 매뉴팩처링 센터) ;
  • 전민현 (인제대학교 나노시스템공학과, 나노 매뉴팩처링 센터)
  • Published : 2009.04.27

Abstract

Lithium dihydrogen phosphate ($LiH_2PO_4$) powder was purchased from Aldrich Chemical Co. From the scanning electron microscope (SEM) observation, these polycrystals have dimensions in the range of $25-250{\mu}m$. The electrical conductivity was measured at a measuring frequency of 1 kHz on heating polycrystalline lithium dihydrogen phosphate ($LiH_2PO_4$) from room temperature to 493 K. Two anomalies appeared at 451 K ($T_{p1}$) and 469 K ($T_{p2}$). The electrical conductivity reached the magnitude of the superprotonic phases: $3{\times}10^{-2}{\Omega}^{-1}cm^{-1}$ at 451 K ($T_{p1}$) and $1.2{\times}10{\Omega}^{-1}cm^{-1}$ at 469 K ($T_{p2}$). It is uncertain whether the superprotonic phase transformations are due to polymorphic transitions in the bulk, surface transitions, or chemical reactions (thermal decomposition) at the surface. Considering several previous thermal studies (differential scanning calorimetry and thermogravimetry), our experimental results seem to be related to the last case: chemical reactions (thermal decomposition) at the surface with the progressive solid-state polymerization.

Keywords

References

  1. P. Colomban, Proton Conductors: Solids, Membranes and Gels - Materials and Devices, Cambridge University Press, Cambridge, England, (1992)
  2. Special Issue on KH2PO4-type Ferro- and Antiferroelectrics, Ferroelectrics, 71 (1987)
  3. M. Catti and G. Ivaldi, Z. Kristallogr., 146, 217 (1977)
  4. L. Ge, R. Ran, R. Cai and Z. Shao, Prog. Chem., 20, 405 (2008)
  5. Y.-K. Taninouchi, T. Uda, Y. Awakura, A. Ikeda and S. M. Haile, J. Mater. Chem., 17, 3182 (2007) https://doi.org/10.1039/b704558c
  6. V. G. Ponomareva and E. S. Shutova, Solid State Ionics, 178, 729 (2007) https://doi.org/10.1016/j.ssi.2007.02.035
  7. V. G. Ponomareva and E. S. Shutova, Russ. J. Electrochem., 43, 513 (2007) https://doi.org/10.1134/S1023193507050035
  8. S. M. Haile, C. R. I. Chisholm, K. Sasaki, D. A. Boysen and T. Uda, Faraday Discuss., 134, 17 (2007) https://doi.org/10.1039/b604311a
  9. T. J. Norman, J. M. Zaug and C. W. Carr, Chem. Mater., 18, 3074 (2006) https://doi.org/10.1021/cm0528330
  10. J. Otomo, T. Tamaki, S. Nishida, S, Wang, M. Ogura, T. Kobayashi, C.-J. Wen, H. Nagamoto and H. Takahashi, J. Appl. Electrochem., 35, 865 (2005) https://doi.org/10.1007/s10800-005-4727-4
  11. T. Matsui, T. Kukino, R. Kikuchi and K. Eguchi, Electrochem. Solid State Lett., 8, A256 (2005) https://doi.org/10.1149/1.1883906
  12. D. A. Boysen, S. M. Haile, H. Liu and R. A. Secco, Chem. Mater., 15, 727 (2003) https://doi.org/10.1021/cm020138b
  13. R. B. Merle, C. R. I. Chisholm, D. A. Boysen and S. M. Haile, Energy Fuels, 17, 210 (2003) https://doi.org/10.1021/ef0201174
  14. J. Otomo, N. Minagawa, C.-J. Wen, K. Eguchi and H. Takahashi, Solid State Ionics, 156, 357 (2003) https://doi.org/10.1016/S0167-2738(02)00746-4
  15. J.-H. Park, K.-S. Lee and J.-N. Kim, J. Phys.: Condens. Matter, 8, 5491 (1996) https://doi.org/10.1088/0953-8984/8/29/022
  16. J.-H. Park, K.-S. Lee and J.-N. Kim, J. Kor. Phys. Soc., 32, S1149 (1998)
  17. J.-H. Park, K.-S. Lee and J.-N. Kim, J. Phys.: Condens. Matter, 10, 9593 (1998) https://doi.org/10.1088/0953-8984/10/43/002
  18. J.-H. Park, K.-S. Lee and B.-C. Choi, J. Phys.: Condens. Matter, 13, 9411 (2001) https://doi.org/10.1088/0953-8984/13/42/302
  19. K.-S. Lee, J.-H. Ko and V. H. Schmidt, J. Kor. Phys. Soc., 46, 104 (2005)
  20. K.-S. Lee, J.-H. Ko, J. Moon, S. Lee and M. Jeon, Solid State Comm., 145, 487 (2008) https://doi.org/10.1016/j.ssc.2007.12.011
  21. K.-S. Lee, J. Moon, J. Lee and M. Jeon, Solid State Comm., 147, 74 (2008) https://doi.org/10.1016/j.ssc.2008.04.011
  22. K.-S. Lee, J. Phys. Chem. Solids, 57, 333 (1996) https://doi.org/10.1016/0022-3697(95)00233-2
  23. K.-S. Lee, Ferroelectrics, 268, 369 (2002) https://doi.org/10.1080/713715958