DOI QR코드

DOI QR Code

Characterization of Thermo-optical Properties of Ferroelectric P(VDF-TrFE) Copolymer Using Febry-Perot Interferometer

Febry-Perot 간섭계를 이용한 강유전 P(VDF-TrFE) 폴리머 열광학 특성평가

  • Song, Hyun-Cheol (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Kim, Jin-Sang (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Yoon, Seok-Jin (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Jeong, Dae-Yong (Department of Materials Science and Engineering, Myongji University)
  • 송현철 (한국과학기술연구원 박막재료연구센터) ;
  • 김진상 (한국과학기술연구원 박막재료연구센터) ;
  • 윤석진 (한국과학기술연구원 박막재료연구센터) ;
  • 정대용 (명지대학교 신소재공학과)
  • Published : 2009.04.27

Abstract

Phase transition in ferroelectric polymer is very interesting behavior and has been widely studied for real device applications, such as actuators and sensors. Through the phase transition, there is structural change resulting in the change of electrical and optical properties. In this study, we fabricated the Febry-Perot interferometer with the thin film of ferroelectric P(VDF-TrFE) 50/50 mol% copolymer, and thermo-optical properties were investigated. The effective thermo-optical coefficient of P(VDF-TrFE) was obtained as $2.3{\sim}3.8{\times}10^{-4}/K$ in the ferroelectric temperature region ($45^{\circ}C{\sim}65^{\circ}C$) and $6.0{\times}10^{-4}/K$ in the phase transition temperature region ($65^{\circ}C{\sim}85^{\circ}C$), which is a larger than optical silica-fiber and PMMA. The resonance transmission peak of P(VDF-TrFE) with the variation of temperature showed hysteretic variation and the phase transition temperature of the polymer in heating condition was higher than in the cooling condition. The elimination of the hysteretic phase transition of P(VDF-TrFE) is necessary for practical applications of optical devices.

Keywords

References

  1. T. Furukawa, Phase Transitions, 18, 143 (1989) https://doi.org/10.1080/01411598908206863
  2. R. A. Ferren, The Applications of Ferroelectric Polymers, T. T. Wang, J. M. Herbert, A. M. Glass, eds., p.6, Chapman and Hall, New York, (1988)
  3. W. V. Munch, M. Nagel, M. Rinner and G. Wohl, Sens. Actuators A, 37, 365 (1993) https://doi.org/10.1016/0924-4247(93)80062-L
  4. Q. M. Zhang, V. Bharti, and X. Zhao, Science, 280, 2101 (1998) https://doi.org/10.1126/science.280.5372.2101
  5. B. Neese, B. Chu, S. Lu, Y. Wang, E. Furman, Q. M. Zhang, Science, 321(5890), 821 (2008) https://doi.org/10.1126/science.1159655
  6. F. Jona and G. Shirane, Ferroelectric Crystals, p.48, Dover, New York, (1993)
  7. D. Jeong, Y. Ye and Q. M. Zhang, Appl. Phys. Lett., 85(21), 4856 (2004) https://doi.org/10.1063/1.1826225
  8. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore and N. D. Mathur, Science, 311, 1270 (2006) https://doi.org/10.1126/science.1123811
  9. D. Jeong and S. Yoon, Electron. Mater. Lett., 2(3), 207 (2006)
  10. K. Urayama, O. Kircher, R. Bohmer and D. Neher, J. Appl. Phys., 86(11), 6367 (1999) https://doi.org/10.1063/1.371699
  11. J. M. Vaughan, The Fabry-Perot Interferometer; History, Theory, Practice and Applications, p.15, Adam Hilger, Bristol and Philadelphia, (1989)
  12. E. Hecht, Optics, p.353, Addison-Wesley Publishing Com., Massachusetts, (1987)
  13. D. Hohlfeld, M. Epmeier and H. Zappe, Sens. Actuators A, 103(12), 93-99 (2003) https://doi.org/10.1016/S0924-4247(02)00320-5
  14. G. D. Sao and H. V. Tiway, J. Appl. Phys., 53(4), 3040 (1982) https://doi.org/10.1063/1.331047
  15. M. Jimbo, T. Fukada, H. Takeda, F. Suzuki, K. Horino, K. Koyama, S. Ikeda and Y. Wada, J. Polym. Sci. B, 24, 909 (1986) https://doi.org/10.1002/polb.1986.090240415
  16. N. Koizumi, N. Haikawa and H. Habuka, Ferroelectrics, 59, 99 (1984)