DOI QR코드

DOI QR Code

A Terahertz Yagi-Uda Antenna with High Input Impedance

높은 입력 임피던스를 가지는 테라헤르츠 Yagi-Uda 안테나

  • Han, Kyung-Ho (School of Electrical and Computer Engineering, Ajou University) ;
  • Nguyen, Troung Khang (School of Electrical and Computer Engineering, Ajou University) ;
  • Park, Ik-Mo (School of Electrical and Computer Engineering, Ajou University) ;
  • Han, Hae-Wook (Department of Electrical and Computer Engineering, Pohang University of Science and Technology)
  • 한경호 (아주대학교 전자공학부) ;
  • ;
  • 박익모 (아주대학교 전자공학부) ;
  • 한해욱 (포항공과대학교 전자컴퓨터공학과)
  • Published : 2009.04.25

Abstract

In this paper, a THz Yagi-Uda antenna with high input impedance is designed. By placing the antenna on a thin substrate, end-fire radiation patterns with high antenna impedance can be obtained even when the substrate has high relative dielectric constant. The proposed Yagi-Uda antenna has high input resistance of approximately $4,400{\Omega}$ at the resonance frequency which is obtained by using a U-shaped dipole as a driver element. It is expected that the Yagi-Uda antenna on a thin substrate can achieve much higher terahertz output power than the conventional THz antennas.

본 논문에서는 높은 입력 임피던스를 가지는 테라헤르츠 Yagi-Uda 안테나를 제안하였다. 제안된 Yagi-Uda 안테나는 두께가 얇은 기판 위에 설계하여 기판의 비유전율에 의한 안테나의 임피던스 저하를 줄이고 Yagi-Uda 안테나 고유의 복사패턴을 가지도록 하였다. 전 파장 길이를 가지는 U-형태의 다이폴을 driver로 사용하여 공진주파수에서 $4,400{\Omega}$ 정도의 높은 입력저항을 얻을 수 있었다. 따라서 제안된 Yagi-Uda 안테나는 기존의 테라헤르츠 안테나들에 비하여 증가된 테라헤르츠파 출력을 얻을 수 있다.

Keywords

References

  1. P. Smith, D. Auston, and M. Nuss, 'Subpicosecond photoconducting dipole antennas,' IEEE J. Quantum Electron., vol. 24, no. 2, pp. 255-260, 1988 https://doi.org/10.1109/3.121
  2. E. Brown, F. Smith, and K. McIntosh, 'Coherent millimeterwave generation by heterodyne conversion in low-temperaturegrown GaAs photoconductors,' J. Appl. Phys., vol. 73, no. 3, pp. 1480-1484, 1993 https://doi.org/10.1063/1.353222
  3. K. McIntosh, E. Brown, K. Nichols, and O. McMahon, 'Terahertz photomixing with diode lasers in low-temperaturegrown GaAs,' Appl. Phys. Lett., vol. 67, no. 26, pp. 3844-3846, 1995 https://doi.org/10.1063/1.115292
  4. P. Jepsen, R. Jacobsen, and S. Keiding, 'Generation and detection of terahertz pulses from biased semiconductor antennas,' J. Opt. Soc. Am. B, vol. 13, no. 11, pp. 2424-2436, 1996 https://doi.org/10.1364/JOSAB.13.002424
  5. S. Verghese, K. A. McIntosh, and E. R. Brown, 'Highly tunable fiber-coupled photomixers with coherent terahertz output power,' IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1301-1309, 1997 https://doi.org/10.1109/22.618428
  6. S. Verghese, E. Duerr, K. McIntosh, S. Duffy, S. Calawa, C. Tong, R. Kimberk, and R. Blundell, 'A photomixer local oscillator for a 630-GHz heterodyne receiver,' IEEE Microwave Guided Wave. Lett., vol. 9, no. 6, pp. 245-247, 1999 https://doi.org/10.1109/75.769535
  7. M. Tani, P. Gu, M. Hyodo, K. Sakai and T. Hidaka, 'Generation of coherent terahertz radiation by photomixing of dual-mode lasers,' Opt. Quant. Electron., vol. 32, no. 4, 5, pp. 503-520, 2000 https://doi.org/10.1023/A:1007070931314
  8. J. Bjarnason, T. Chan, A. Lee, and E. Brown, D. Driscoll, M. Hanson, A. Gossard, and R. Muller, 'ErAs: GaAs photomixer with two-decade tunability and 12 μW peak output power,' Appl. Phys. Lett., vol. 85, no. 18, pp. 3983-3985, 2004 https://doi.org/10.1063/1.1813635
  9. D. Saeedkia, A. Majedi, S. Safavi-Naeini, and R. Mansour, 'Analysis and design of a photoconductive integrated photomixer/antenna for terahertz applications,' IEEE J. Quantum Electron., vol. 41, no. 2, pp. 234-241, 2005 https://doi.org/10.1109/JQE.2004.839688
  10. P. Kordos, M. Marso, and M. Mikulics, 'Performance optimization of GaAs-based photomixers as sources of THz radiation,' Appl. Phys. Lett., A, vol. 87, no. 3, pp. 563-567, 2007
  11. I. Gregory, M. Evans, H. Page, S. Malik, I. Farrer, and H. E. Beere, 'Analysis of photomixer receivers for continuouswave terahertz radiation,' Appl. Phys. Lett., vol. 91, no. 15, pp. 154103-1-154103-3, 2007 https://doi.org/10.1063/1.2789709
  12. S. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. Gossard, and S. Matsuura, 'Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,' IEEE Trans. Microwave Theory Tech., vol. 49, no. 6, pp. 1032-1038, 2001 https://doi.org/10.1109/22.925487
  13. D. Rutledge, D. Neikirk, and D. Kasilingam, 'Integrated-Circuit Antennas,' Infrared and Millimeter Waves, K. J. Button, Ed., (Academic Press, 1983), vol. 10, pp. 6-17
  14. E. Brown, K. McIntosh, K. Nichols, and C. Dennis, 'Photomixing up to 3.8 THz in low-temperature-grown GaAs,' Appl. Phys. Lett., vol. 66, no. 3, pp. 285-287, 1995 https://doi.org/10.1063/1.113519
  15. C. A. Balanis, Antenna Theory, 2nd Ed., (John Wiley & Sons, 1997), pp. 60-62
  16. 한경호, 박용배, 김상인, 한해욱, 박익모, 임한조, '고출력 테라헤르츠파 발생을 위한 새로운 구조의 Yagi-Uda 안테나,' 한국광학회지, 제 19권 1호, pp. 9-14, 2008 https://doi.org/10.3807/HKH.2008.19.1.009
  17. K. Moon, H. Han, and I. Park, 'Terahertz folded halfwavelength dipole antenna for high output power,' in Topical Meeting on Microwave Photonics, Seoul, Korea, pp. 301-304, 2005

Cited by

  1. Implementation of Stereoscopic 3D Video Player System Having Less Visual Fatigue and Its Computational Complexity Analysis for Real-Time Processing vol.17, pp.12, 2013, https://doi.org/10.6109/jkiice.2013.17.12.2865
  2. Four-leaf Clover-shaped Antenna for THz Photomixer for High Output Power vol.20, pp.5, 2009, https://doi.org/10.3807/KJOP.2009.20.5.294