DOI QR코드

DOI QR Code

Shock compression of condensed matter using multi-material Reactive Ghost Fluid method : development and application

충격파와 연소 현상 하에서의 다중 물질 해석을 위한 Reactive Ghost Fluid 기법 개발 및 응용

  • 김기홍 (서울대학교 대학원 기계항공공학부) ;
  • 여재익 (서울대학교 기계항공공학부, 항공우주신기술연구소)
  • Published : 2009.06.01

Abstract

For the flow analysis of reactive compressible media involving energetic materials and metallic confinements, a Hydro-SCCM (Shock Compression of Condensed Matter) tool is developed for handling multi-physics shock analysis of energetics and inerts. The highly energetic flows give rise to the strong non-linear shock waves and the high strain rate deformation of compressible boundaries at high pressure and temperature. For handling the large gradients associated with these complex flows in the condensed phase as well as in the reactive gaseous phase, a new Eulerian multi-fluid method is formulated. Mathematical formulation of explosive dynamics involving condensed matter is explained with an emphasis on validating and application of hydro-SCCM to a series of problems of high speed multimaterial dynamics in nature.

에너지 물질과 같이 연소 반응을 하는 압축성 물질을 해석하기 위하여 Hydro-SCCM (Shock Compression of Condensed Matter)이라는 에너지 물질과 비반응 물질을 포함한다중 물질 해석툴을 개발하였다. 고에너지 물질은 강한 충격파와 고온과 고압을 가진 물질경계면에서 높은 변형률을 발생시킨다. 이러한 큰 구배를 가진 현상을 해석하기 위하여 새로운 오일러리안 기법을 사용하였다. 본 논문에서는 현상을 해석하기 위한 수학적 방법과 해석결과를 소개하였다.

Keywords

References

  1. Fedkiw, R.P., Aslam, T., Merriman, B.,and Osher, S., “A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows”, Journal of Computational Physics, Vol. 152, 1999,pp. 457-492. https://doi.org/10.1006/jcph.1999.6236
  2. Stewart, D.S., Yoo, S. and Wescott, B.L.,“High-order Numerical Simulation and Modeling of the Interaction of Energetic and Inert Materials”, Combustion Theory and Modelling, Vol. 11, 2007, pp. 305-332. https://doi.org/10.1080/13647830600876629
  3. Tran, L. and Udaykumar, H.S., “Aparticle-level set-based Sharp Interface Cartesian Grid Method for Impact, Penetration, and Void Collapse”, Journal of Computational Physics, Vol. 193, 2004, pp. 469-510. https://doi.org/10.1016/j.jcp.2003.07.023
  4. Liu, T.G., Khoo, B.C. and Yeo, K.S.,“Ghost Fluid Method for Strong Shock Impacting on Material Interface”, Journal of Computational Physics, Vol. 190, 2003, pp. 651-681. https://doi.org/10.1016/S0021-9991(03)00301-2
  5. McGlaun, J.M., Thompson, S.L. and ElrickM.G. , “CTH: a Three-dimensional Shock Wave Physics Code”, International Journal of Impact Engineering, Vol. 10, 1990, pp. 351-360. https://doi.org/10.1016/0734-743X(90)90071-3
  6. Sharp, R. and the ALE3D Team, “UsersManual for ALE3D”, Lawrence LivermoreNational Laboratory, Ver.3.6.1, October, 2003.
  7. Kothe, D.B., Baumgardner, J.R., et al., “PAGOSA: A Massively-Parallel, Multi-Material Hydrodynamics Model for Three-Dimensional High-Speed Flow and High-Rate Material Deformation”, High Performance Computing Symposium, 1993, pp. 9-14.
  8. Yoh, J.J. and Zhong, X., “New Hybrid Rung-Kutta Methods for Unsteady Reactiveflow Simulation”, AIAA Journal, Vol. 42, 2004,pp. 1593-1600. https://doi.org/10.2514/1.3843
  9. Yoh, J.J., “Thermomechanical andNumerical Modeling of Energetic Materials andMulti-material Impact”, Ph.D. Thesis,Theoretical and Applied Mechanics, Universityof Illinois at Urbana-Champaign, 2001.
  10. Liu, X.-D. and Osher, S., “Convex ENO High Order Multi-dimensional Schemes without Field by Field Decomposition or Staggered Grids”, Journal of Computational Physics, Vol. 141, 1998, pp. 1-27. https://doi.org/10.1006/jcph.1998.5900
  11. Peng, D., Merriman, B., Osher, S., Zhao,H. and Kang, M., “A PDE-Based Fast Local Level Set Method”, Journal of Computational Physics, Vol. 155, 1999, pp. 410-438. https://doi.org/10.1006/jcph.1999.6345
  12. Fedkiw, R.P., Marquina, A., andMerriman, B., “An Isobaric Fix for the Overheating Problem in Multimaterial Compressible Flow”, Journal of ComputationalPhysics, Vol. 148, 1999, pp. 545-578. https://doi.org/10.1006/jcph.1998.6129
  13. Yoh, J.J., McClelland, M.A., Maienschein,J.L., Wardell, J.F. and Tarver, C.M., “Simulating Thermal Explosion of RDX-based Explosives: Model comparison with Experiment”, Journal of Applied Physics, Vol. 97, 2005, 083504. https://doi.org/10.1063/1.1863429
  14. Yoh, J.J., McClelland, M.A., Maienschein,J.L., Nichols, A.L. and Tarver, C.M.,“Simulating Thermal Explosion of HMX-basedExplosives: Model comparison withExperiment”, Journal of Applied Physics, Vol.100, 2006, 073515. https://doi.org/10.1063/1.2357418
  15. Lee, E.L. and Tarver, C.M.,“Phenomenological Model of Shock Initiationin Heterogeneous Explosives”, Physics of Fluid, Vol. 23, 1980, pp. 2362-2372. https://doi.org/10.1063/1.862940
  16. Souers, P.C., Anderson, S., Mercer, J.,McGuire, E. and Vitello, P., “JWL++ : Asimple Reactive Flow Code Package for Detonation”, Propellants, Explosives, Pyrotechnics, Vol. 25, 2000, pp. 54-58. https://doi.org/10.1002/(SICI)1521-4087(200004)25:2<54::AID-PREP54>3.0.CO;2-3
  17. Yoh, J.J. and Kim, K.H., Shock Compression of Condensed Matter using Eulerian Multi-material Method: Applications, Journal of Applied Physics, Vol. 103, 2008, 113507. https://doi.org/10.1063/1.2937936
  18. Taylor, G., “The Formation of a Blast Wave by a Very Intense Explosion. I.Theoterical discussion”, Mathematical and Physical Sciences, Vol. 201, 1950, pp. 159-174. https://doi.org/10.1098/rspa.1950.0049
  19. Camacho, G.T., Ortiz, M., “Adaptive Lagrangian Modelling of Ballistic Penetration of Metallic Targets”, Computer Methods in Applied Mechanics and Engineering, Vol. 142, 1997, pp. 269-301. https://doi.org/10.1016/S0045-7825(96)01134-6
  20. 여재익, “로켓 추진제의 익스트림-스케일상면 두께 예측”, 한국항공우주학회지, 37권 1호,2009, pp. 82-88. https://doi.org/10.5139/JKSAS.2009.37.1.082