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SOME RESULTS ON (LCS)n-MANIFOLDS

Absos Ali Shaikh

Abstract. The object of the present paper is to study (LCS)n-mani-
folds. Several interesting results on a (LCS)n-manifold are obtained.
Also the generalized Ricci recurrent (LCS)n-manifolds are studied. The
existence of such a manifold is ensured by several non-trivial new exam-
ples.

1. Introduction

Recently the present author [6] introduced the notion of Lorentzian concir-
cular structure manifolds (briefly (LCS)n-manifolds) with an example. The
present paper deals with a study of various types of (LCS)n-manifolds. Af-
ter preliminaries, in Section 3 we study the fundamental results of (LCS)n-
manifolds and proved that in such a manifold the Ricci operator commutes with
the structure tensor φ. Section 4 is devoted to the study of conformally flat
(LCS)n-manifolds and it is proved that such a (LCS)n-manifold is η-Einstein
as well as a manifold of quasi constant curvature. The notion of generalized
Ricci recurrent manifold was introduced by De, Guha, and Kamilya [2] in 1995.
Section 5 is concerned with generalized Ricci recurrent (LCS)n-manifolds and
in the last section we investigate the existence of such a manifold and found
various new examples of both in even and odd dimensions.

2. (LCS)n-manifolds

An n-dimensional Lorentzian manifold M is a smooth connected paracom-
pact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0, 2) such that for each point p ∈ M , the
tensor gp : TpM × TpM → R is a non-degenerate inner product of signature
(−,+, . . . , +), where TpM denotes the tangent vector space of M at p and R is
the real number space. A non-zero vector v ∈ TpM is said to be timelike (resp.,
non-spacelike, null, spacelike) if it satisfies gp(v, v) < 0 (resp., ≤ 0, = 0, > 0)
[5]. The category to which a given vector falls is called its causal character.
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Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined by

g(X, P ) = A(X)

for any X ∈ χ(M) is said to be a concircular vector field if

(∇XA)(Y ) = α{g(X, Y ) + ω(X)A(Y )},
where α is a non-zero scalar and ω is a closed 1-form.

Let Mn be a Lorentzian manifold admitting a unit timelike concircular vec-
tor field ξ, called the characteristic vector field of the manifold. Then we have

(2.1) g(ξ, ξ) = −1.

Since ξ is a unit concircular vector field, it follows that there exists a non-zero
1-form η such that for

(2.2) g(X, ξ) = η(X),

the equation of the following form holds

(2.3) (∇Xη)(Y ) = α{g(X, Y ) + η(X)η(Y )} (α 6= 0)

for all vector fields X, Y , where ∇ denotes the operator of covariant differentia-
tion with respect to the Lorentzian metric g and α is a non-zero scalar function
satisfies

(2.4) ∇Xα = (Xα) = dα(X) = ρη(X),

ρ being a certain scalar function given by ρ = −(ξα). If we put

(2.5) φX =
1
α
∇Xξ,

then from (2.3) and (2.5) we have

(2.6) φX = X + η(X)ξ,

from which it follows that φ is a symmetric (1, 1) tensor and called the structure
tensor of the manifold. Thus the Lorentzian manifold Mn together with the
unit timelike concircular vector field ξ, its associated 1-form η and (1, 1) tensor
field φ is said to be a Lorentzian concircular structure manifold (briefly (LCS)n-
manifold) [6]. Especially, if we take α = 1, then we can obtain the LP-Sasakian
structure of Matsumoto [4]. In a (LCS)n-manifold, the following relations hold
[6]:
(2.7)
a) η(ξ) = −1, b) φξ = 0, c) η(φX) = 0, d) g(φX, φY )= g(X, Y )+η(X)η(Y ),

(2.8) η(R(X, Y )Z) = (α2 − ρ)[g(Y, Z)η(X)− g(X, Z)η(Y )],

(2.9) S(X, ξ) = (n− 1)(α2 − ρ)η(X),

(2.10) R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ],

(2.11) (∇Xφ)(Y ) = α{g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X}
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for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor
and the Ricci tensor of the manifold.

3. Fundamental results of (LCS)n-manifolds

Proposition 3.1. A (LCS)n-manifold of constant curvature is a manifold of
constant curvature (α2 − ρ).

Proof. If a (LCS)n-manifold is of constant curvature k, say, then we have

R(X,Y )Z = k[g(Y,Z)X − g(X, Z)Y ],

which yields by setting Z = ξ that

R(X, Y )ξ = k[η(Y )X − η(X)Y ].

This implies by virtue of (2.10) that k = (α2 − ρ). Hence the proposition is
proved. ¤

Lemma 3.1. In a (LCS)n-manifold, the following relation holds:

(3.1) (Xρ) = dρ(X) = βη(X)

for any vector field X and β is a certain scalar function.

Proof. From (2.4), it follows that

∇(dα)(Y, X) = ∇X(dα)(Y ) = X(Y α)− ((∇XY )α)

which implies that

(3.2) ∇(dα)(X,Y ) = (dα)(Y, X).

Also
∇(dα)(Y, X) = Y (dα(X))− dα(∇Y X),

which implies by virtue of (2.3) and (2.4) that

∇(dα)(Y, X) = (Y ρ)η(X) + ρα[g(X,Y ) + η(X)η(Y )].

This implies by virtue of (2.2) that

(Xρ)η(Y ) = (Y ρ)η(X),

which yields
(Xρ) = βη(X),

where β = −(ξρ) is a scalar function. Hence the result holds. ¤

Lemma 3.2. Let Mn(φ, ξ, η, g) be a (LCS)n-manifold. Then for any X,Y, Z
on Mn, the following relation holds:

R(X, Y )φZ − φR(X, Y )Z = (α2 − ρ)[{g(Y, Z)η(X)− g(X, Z)η(Y )}ξ(3.3)

+ η(Z){η(X)Y − η(Y )X}].
Proof. From (2.3)-(2.7), (2.11) and the Ricci identity we can easily get
(3.3). ¤
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Lemma 3.3. Let (Mn, g) be a (LCS)n-manifold. Then

g(φR(φX, φY )Z, φW ) = g(R(X, Y )Z, W ) + (α2 − ρ)[{g(Y, W )η(Z)(3.4)

− g(Y, Z)η(W )}η(X) + {g(X,W )η(Z)

− g(X, Z)η(W )}η(Y )]

for any vector field X, Y, Z, W on Mn.

Proof. Using (2.6), (2.8) and η(φX) = 0, we can calculate

g(φR(φX, φY )Z, φW ) = g(R(φX, φY )Z,W ) = g(R(Z, W )φX, φY )

= g(φR(Z, W )X,φY ) + (α2 − ρ)[g(W,φY )η(X)η(Z)

− g(Z, φY )η(X)η(W )].

The relation (3.4) follows from this and

g(R(Z,W )X, Y ) = g(R(X, Y )Z, W ). ¤

Lemma 3.4. Let (Mn, g) be a (LCS)n-manifold. Then for any X, Y, Z on
Mn, the following relation holds:

g(R(φX, φY )φZ, φW ) = g(R(X, Y )Z, W ) + (α2 − ρ)[{g(Y, W )η(Z)(3.5)

− g(Y, Z)η(W )}η(X) + {g(X,W )η(Z)

− g(X, Z)η(W )}η(Y )].

Proof. Replacing X,Y by φX, φY respectively in (3.3) and taking the inner
product on both sides by φW we get

(3.6) g(R(φX, φY )φZ, φW ) = g(φR(φX, φY )Z, φW ).

Using (3.4) in (3.6) we obtain (3.5). ¤

Theorem 3.1. Let (Mn, g) be a (LCS)n-manifold. Then the Ricci operator
Q commutes with φ.

Proof. To prove the result, we shall show that

(3.7) Qφ = φQ.

From (3.2), it follows that

φR(φX, φY )φZ = R(X,Y )Z + (α2 − ρ)[η(X){η(Z)Y − g(Y, Z)ξ}(3.8)

+ η(Y ){η(Z)X − g(X, Z)ξ}].
We now consider the following two cases:

(i) dim M = n = odd = 2m + 1,

(ii) dim M = n = even = 2m + 2.
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Case (i): If n = 2m + 1, let {ei, φei, ξ}, i = 1, 2, . . . , m be an orthonormal
frame at any point of the manifold. Then putting Y = Z = ei in (3.8) and
taking summation over i and using η(ei) = 0, we get

(3.9)
m∑

i=1

εiφR(φX, φei)φei =
m∑

i=1

εiR(X, ei)ei −m(α2 − ρ)η(X)ξ,

where εi = g(ei, ei).
Again setting Y = Z = φei in (3.8) and taking summation over i and then

using η ◦ φ = 0 and (2.1) we get

(3.10)
m∑

i=1

εiφR(φX, ei)ei =
m∑

i=1

εiR(X, φei)φei −m(α2 − ρ)η(X)ξ.

Adding (3.9) and (3.10) and using the definition of the Ricci operator, we obtain

φ(QφX −R(φX, ξ)ξ) = QX −R(X, ξ)ξ − 2m(α2 − ρ)η(X)ξ.

Using (2.10) and φξ = 0 in the above relation we have

φQφX = QX − 2m(α2 − ρ)η(X)ξ.

Operating both sides by φ and using (2.1), symmetry of Q, φξ = 0 and (2.9)
we get (3.7).

Case (ii): If n = 2m + 2, let {ei, φei}, i = 1, 2, . . . ,m + 1 be an orthonormal
frame such that each ei is orthogonal to ξ, i.e., η(ei) = 0. Then putting
Y = Z = ei in (3.8) and taking summation over i and using η(ei) = 0, we get

(3.11)
m+1∑

i=1

εiφR(φX, φei)φei =
m+1∑

i=1

εiR(X, ei)ei − (m + 1)(α2 − ρ)η(X)ξ,

where εi = g(ei, ei).
Again replacing Y and Z by φei in (3.8) and taking summation over i and

then using η(ei) = 0 and (2.1), it follows that

(3.12)
m+1∑

i=1

εiφR(φX, ei)ei =
m+1∑

i=1

εiR(X, φei)φei − (m + 1)(α2 − ρ)η(X)ξ.

Adding (3.11) and (3.12) and then proceeding similarly as in Case (i) we can
easily obtain (3.7). This proves the theorem. ¤

Proposition 3.2. In a (LCS)n-manifold the relation

(3.13) S(φX, φY ) = (n− 1)(α2 − ρ)g(X,Y ) + S(X, Y )

holds.

Proof. The proposition follows from Theorem 3.1. ¤
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4. Conformally flat (LCS)n-manifolds

This section deals with conformally flat (LCS)n (n ≥ 4) manifolds.

Definition 4.1. A (LCS)n-manifold is said to be η-Einstein if its Ricci tensor
S of type (0, 2) is of the form

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ),

where a, b are the smooth functions over the manifold such that b is non-zero.

Theorem 4.1. A conformally flat (LCS)n (n ≥ 4) manifold is an η-Einstein
manifold.

Proof. If a (LCS)n (n ≥ 4) manifold is conformally flat, then its curvature
tensor is given by

R(X, Y )Z =
1

n− 2
[S(Y, Z)X − S(X, Z)Y + g(Y, Z)QX − g(X, Z)QY ](4.1)

− r

(n− 1)(n− 2)
[g(Y,Z)X − g(X, Z)Y ].

Setting Z = ξ in (4.1) and then using (2.9) and (2.10) we obtain

(α2 − ρ)[η(Y )X − η(X)Y ] =
1

n− 2
[(n− 1)(α2 − ρ){η(Y )X − η(X)Y }(4.2)

+ η(Y )QX − η(X)QY ]

− r

(n− 1)(n− 2)
[η(Y )X − η(X)Y ].

Again replacing Y by ξ in (4.2) we obtain by virtue of (2.9) that

(4.3) QX =
[ r

n− 1
− (α2 − ρ)

]
X −

[ r

n− 1
− n(α2 − ρ)

]
η(X)ξ

which can also be written as

(4.4) S(X, Y ) =
[ r

n− 1
− (α2 − ρ)

]
g(X, Y )−

[ r

n− 1
− n(α2 − ρ)

]
η(X)η(Y )

which implies that the manifold is η-Einstein. ¤
Corollary 4.1. A (LCS)3 manifold is an η-Einstein manifold.

Proof. Since in a 3-dimensional Lorentzian manifold, the Weyl conformal cur-
vature tensor vanishes, it follows that (4.1) holds for n = 3 and hence it can be
easily shown that a (LCS)3 manifold is always an η-Einstein manifold. ¤
Definition 4.2. A Riemannian manifold (Mn, g) (n ≥ 4) is said to be of quasi-
constant curvature if it is conformally flat and its curvature tensor R̃ of type
(0, 4) has the following form:

R̃(X, Y, Z, W ) = a[g(Y, Z)g(X, W )− g(X, Z)g(Y, W )](4.5)

+ b[g(X,W )A(Y )A(Z)− g(Y,W )A(X)A(Z)

+ g(Y, Z)A(X)A(W )− g(X, Z)A(Y )A(W )],
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where A is a 1-form and a, b are scalars of which b 6= 0.

This notion of quasi-constant curvature was introduced by Chen and Yano
[1].

Theorem 4.2. A conformally flat (LCS)n (n ≥ 4) manifold is of quasi-
constant curvature.

Proof. By virtue of (4.3) and (4.4), the relation (4.1) takes the form

R̃(X, Y, Z, W ) = ã[g(Y, Z)g(X, W )− g(X, Z)g(Y,W )](4.6)

+ b̃[g(X, W )η(Y )η(Z)− g(Y,W )η(X)η(Z)

+ g(Y, Z)η(X)η(W )− g(X, Z)η(Y )η(W )],

where ã = 1
n−2 [ r

n−1 − 2(α2 − ρ)] and b̃ = 1
n−2 [ r

n−1 − n(α2 − ρ)] are smooth
functions. Here b̃ 6= 0 as for b̃ = 0, (4.4) yields that the manifold is Einstein,
but the manifold under consideration is η-Einstein. Hence comparing (4.5) and
(4.6), the theorem is proved. ¤

5. Generalized Ricci recurrent (LCS)n-manifold

Definition 5.1. A (LCS)n-manifold is said to be generalized Ricci recurrent
[2] if its Ricci tensor S of type (0, 2) satisfies the condition

(5.1) (∇XS)(Y,Z) = A(X)S(Y,Z) + B(X)g(Y, Z),

where A and B are two non-zero 1-forms such that A(X) = g(X, P ) and
B(X) = g(X, L), P and L being associated vector fields of the 1-form A and
B, respectively.

Theorem 5.1. In a generalized Ricci recurrent (LCS)n (n ≥ 4) manifold, the
1-form A and B are related by

(5.2) B(X) = (n− 1)[(2αρ− β)η(X)− (α2 − ρ)A(X)].

Proof. In a generalized Ricci recurrent (LCS)n-manifold, we have the relation
(5.1). Setting Z = ξ in (5.1) we have

(5.3) (∇XS)(Y, ξ) = [(α2 − ρ)A(X) + B(X)]η(Y ).

Again
(∇XS)(Y, ξ) = ∇XS(Y, ξ)− S(∇XY, ξ)− S(Y,∇Xξ)

which yields by virtue of (2.3), (2.4), (2.9), and (3.1) that
(5.4)
(∇XS)(Y, ξ) = (n− 1)[(2αρ− β)η(X)η(Y ) + α(α2 − ρ)g(X, Y )]− αS(X, Y ).

From (5.3) and (5.4), it follows that

αS(X, Y ) = (n− 1)[(2αρ− β)η(X)η(Y ) + α(α2 − ρ)g(X,Y )(5.5)

− (α2 − ρ)A(X)η(Y )]−B(X)η(Y ).

Replacing Y by ξ in (5.5) we obtain (5.2). This proves the theorem. ¤
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Theorem 5.2. A generalized Ricci recurrent (LCS)n-manifold is Einstein if
and only if β = 2αρ.

Proof. In a generalized Ricci recurrent (LCS)n-manifold we have the relation
(5.5). Hence setting Y = φY in (5.5) and then using (2.7) we have

S(X, Y ) = (n− 1)(α2 − ρ)g(X, Y ).(5.6)

If the manifold under consideration is Einstein, then (5.6) implies α2 − ρ =
constant and hence 2αρ−β = 0. Conversely, if 2αρ−β = 0, then ∇X(α2−ρ) =
0. Consequently α2 − ρ = constant. ¤
Theorem 5.3. In an Einstein generalized Ricci recurrent (LCS)n-manifold the
associated 1-forms are linearly dependent and the vector fields of the associated
1-forms are of opposite direction for α2 − ρ > 0.

Proof. In a generalized Ricci recurrent (LCS)n-manifold we have the relation
(5.5). If such a manifold is Einstein, then α2−ρ is constant and hence 2αρ−β =
0. Consequently (5.2) reduces to

(5.7) B(X) + kA(X) = 0,

where k = (n− 1)(α2 − ρ) = constant. This proves the theorem. ¤
Theorem 5.4. A generalized Ricci recurrent (LCS)n (n ≥ 4) manifold is Ricci
symmetric if and only if β = 2αρ.

Proof. In a generalized Ricci recurrent (LCS)n-manifold we have the relation
(5.6) from which it follows that

(5.8) (∇XS)(Y,Z) = (n− 1)(2αρ− β)η(X)g(Y, Z).

If in a generalized Ricci recurrent (LCS)n-manifold α2 − ρ is constant, then
the relation (5.7) holds. Hence using (5.7) in (5.1) we get

(5.9) (∇XS)(Y,Z) = A(X)[S(Y, Z)− kg(Y, Z)].

This implies by virtue of (5.6) that

(5.10) (∇XS)(Y, Z) = 0.

Conversely, if (5.10) holds, then (5.8) implies that 2αρ − β = 0 and hence
α2 − ρ = constant. This proves the theorem. ¤
Definition 5.2. The Ricci tensor of a generalized Ricci recurrent (LCS)n-
manifold is said to be η-parallel if it satisfies

(5.11) (∇ZS)(φX, φY ) = 0

for all vector fields X, Y and Z on M .

The notion of Ricci η-parallelity was first introduced by M. Kon [3] for the
Sasakian manifolds.

Theorem 5.5. The Ricci tensor of a generalized Ricci recurrent (LCS)n (n ≥
4) manifold is η-parallel if and only if the manifold is Einstein.
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Proof. The Ricci tensor of a generalized Ricci recurrent (LCS)n-manifold is
η-parallel if and only if the following relation holds [6]

(∇ZS)(X, Y ) = α[S(Y,Z)η(X) + S(X,Z)η(Y )](5.12)

− (n− 1)[(2αρ− β)η(X)η(Y )η(Z)

+ α(α2 − ρ){g(X, Z)η(Y ) + g(Y,Z)η(X)}].
Again in a generalized Ricci recurrent (LCS)n-manifold, the relations (5.5) and
(5.6) hold. Therefore in view of (5.6), (5.8) and (5.12) we obtain 2αρ−β = 0 and
hence α2 − ρ = constant. Consequently (5.6) implies that the manifold under
consideration is Einstein. Conversely, if 2αρ − β = 0, then ∇X(α2 − ρ) = 0.
Thus if a generalized Ricci recurrent (LCS)n-manifold is Einstein, then we
have α2− ρ = constant and hence the relation (5.10) holds, which implies that

(∇ZS)(φX, φY ) = 0

for all X, Y and Z on M . Therefore the Ricci tensor of the manifold under
consideration is η-parallel. Thus the theorem is proved. ¤

6. Examples of (LCS)n-manifolds

Example 6.1. We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3},
where (x, y, z) are the standard coordinates in R3. Let {e1, e2, e3} be linearly
independent global frame on M given by

e1 = e−z

(
∂

∂x
+ y

∂

∂y

)
, e2 = e−z ∂

∂y
, e3 = e−2z ∂

∂z
.

Let g be the Lorentzian metric defined by g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,
g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1. Let η be the 1-form defined by
η(U) = g(U, e3) for any U ∈ χ(M). Let φ be the (1, 1) tensor field defined by
φe1 = e1, φe2 = e2, φe3 = 0. Then using the linearity of φ and g we have
η(e3) = −1, φ2U = U + η(U)e3 and g(φU, φW ) = g(U,W ) + η(U)η(W ) for
any U,W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines a Lorentzian paracontact
structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric
g and R be the curvature tensor of g. Then we have

[e1, e2] = −e−ze2, [e1, e3] = e−2ze1, [e2, e3] = e−2ze2.

Taking e3 = ξ and using Koszul formula for the Lorentzian metric g, we can
easily calculate

∇e1e3 = e−2ze1, ∇e1e2 = 0, ∇e1e1 = e−2ze3,

∇e2e3 = e−2ze2, ∇e2e2 = e−2ze3 − e−ze1, ∇e2e1 = e−2ze2,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is a (LCS)3 structure on
M . Consequently M3(φ, ξ, η, g) is a (LCS)3-manifold with α = e−2z 6= 0 such



458 ABSOS ALI SHAIKH

that (Xα) = ρη(X), where ρ = 2e−4z. Using the above relations, we can easily
calculate the non-vanishing components of the curvature tensor as follows:

R(e2, e3)e3 = e−4ze2, R(e1, e3)e3 = e−4ze1, R(e1, e2)e2 = e−4ze1−e−2ze1,

R(e2, e3)e2 = e−4ze3, R(e1, e3)e1 = e−4ze3, R(e1, e2)e1 = −e−4ze2+e−2ze2

and the components which can be obtained from these by the symmetry prop-
erties from which, we can easily calculate the non-vanishing components of the
Ricci tensor S as follows:

S(e1, e1) = 2e−4z − e−2z, S(e2, e2) = 2e−4z − e−2z, S(e3, e3) = 2e−4z.

Since {e1, e2, e3} is a frame field for (LCS)3-manifold, any vector field X,Y ∈
χ(M) can be written as

X = a1e1 + b1e2 + c1e3

and
Y = a2e1 + b2e2 + c2e3,

where ai, bi, ci ∈ R+ (= the set of positive real numbers), i = 1, 2, 3, such that
c1c2 6= a1a2 + b1b2. Hence

S(X, Y ) = 2(a1a2 + b1b2 + c1c2)e−4z − (a1a2 + b1b2)e−2z

and
g(X,Y ) = a1a2 + b1b2 − c1c2.

By virtue of the above we have the following:

(∇e1S)(X, Y ) = (a1c2 + a2c1)(e−4z − 4e−6z),

(∇e2S)(X,Y ) = (b1c2 + b2c1)(e−4z − 4e−6z)

and
(∇e3S)(X,Y ) = 0.

We shall show that this (LCS)3-manifold is a generalized Ricci recurrent, i.e.,
it satisfies the relation (5.1). Let us now consider the 1-forms

A(e1) =
(a1c2 + a2c1)

2(a1a2 + b1b2 + c1c2)
,

A(e2) =
(b1c2 + b2c1)

2(a1a2 + b1b2 + c1c2)
,

A(e3) = 0,

B(e1) =
e−2z(a1c2 + a2c1)[(a1a2 + b1b2)(1− 8e−4z)− 8c1c2e

−4z]
2(a1a2 + b1b2 + c1c2)(a1a2 + b1b2 − c1c2)

,

B(e2) =
e−2z(b1c2 + b2c1)[(a1a2 + b1b2)(1− 8e−4z)− 8c1c2e

−4z]
2(a1a2 + b1b2 + c1c2)(a1a2 + b1b2 − c1c2)

,

B(e3) = 0
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at any point x ∈ M . In our M3, (5.1) reduces with these 1-forms to the
following equations:

(i) (∇e1S)(X, Y ) = A(e1)S(X,Y ) + B(e1)g(X, Y ),

(ii) (∇e2S)(X, Y ) = A(e2)S(X,Y ) + B(e2)g(X, Y ),

(iii) (∇e3S)(X, Y ) = A(e3)S(X,Y ) + B(e3)g(X, Y ).

This shows that the manifold under consideration is a generalized Ricci re-
current (LCS)3-manifold which is neither Ricci-symmetric nor Ricci-recurrent.
Hence we can state the following:

Theorem 6.1. There exists a generalized Ricci recurrent (LCS)3-manifold
which is neither Ricci-symmetric nor Ricci-recurrent.

Example 6.2. We consider the 4-dimensional manifold M = {(x1, x2, x3, x4) ∈
R4|x4 6= 0}, where (x1, x2, x3, x4) are the standard coordinates in R4. Let
{e1, e2, e3, e4} be linearly independent global frame on M given by

e1 = x4

(
∂

∂x1
+ x2

∂

∂x2

)
, e2 = x4

∂

∂x2
, e3 = x4

(
∂

∂x2
+

∂

∂x3

)
, e4 = (x4)3

∂

∂x4
.

We define φ, ξ, η, g by φe1 = e1, φe2 = e2, φe3 = e3, φe4 = 0, ξ = (x4)3 ∂
∂x4

,
η(X) = g(X, e4) for any X ∈ χ(M), g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,
g(e4, e4) = −1, g(ei, ej) = 0 for i 6= j, i, j = 1, 2, 3, 4.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric
g. Then we have

[e1, e2] = −x4e2, [e1, e4] = −(x4)2e1, [e2, e4] = −(x4)2e2, [e3, e4] = −(x4)2e3.

Taking e4 = ξ and using Koszul formula for the Lorentzian metric g, we can
easily calculate

∇e1e4 = −(x4)2e1, ∇e2e1 = x4e2, ∇e1e1 = −(x4)2e4, ∇e2e4 = −(x4)2e2,

∇e3e4 = −(x4)2e3, ∇e3e3 = −(x4)2e4. ∇e2e2 = −(x4)2e4 − x4e1.

From the above it can be easily seen that (φ, ξ, η, g) is an (LCS)4 structure on
M . Consequently M4(φ, ξ, η, g) is an (LCS)4-manifold with α = −(x4)2 6= 0
such that (Xα) = ρη(X), where ρ = 2(x4)4.

Using the above relations, we can easily calculate the non-vanishing compo-
nents of the curvature tensor as follows:

R(e1, e4)e1 = (x4)4e4, R(e2, e4)e2 = (x4)4e4, R(e3, e4)e3 = (x4)4e4,

R(e1, e3)e3 = (x4)4e1, R(e1, e3)e1 = −(x4)4e3, R(e2, e3)e2 = −(x4)4e3,

R(e1, e4)e4 = (x4)4e1, R(e2, e4)e4 = (x4)4e2, R(e1, e2)e2 = [(x4)4 − (x4)2]e1,

R(e2, e3)e3 = (x4)4e2, R(e3, e4)e4 = (x4)4e3, R(e1, e2)e1 = −[(x4)4 − (x4)2]e2
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and the components which can be obtained from these by the symmetry prop-
erties from which, we can easily calculate the non-vanishing components of the
Ricci tensor S as follows:

S(e1, e1) = 3(x4)4 − (x4)2, S(e3, e3) = 3(x4)4,

S(e2, e2) = 3(x4)4 − (x4)2, S(e4, e4) = 3(x4)4.

Since {e1, e2, e3, e4} is a frame field for (LCS)4-manifold, any vector field
X, Y ∈ χ(M) can be written as

X = a1e1 + b1e2 + c1e3 + d1e4

and
Y = a2e1 + b2e2 + c2e3 + d2e4,

where ai, bi, ci, di ∈ R+ (= the set of positive real numbers), i = 1, 2, 3, 4, such
that d1d2 6= a1a2 + b1b2 + c1c2. Hence

S(X,Y ) = 3(a1a2 + b1b2 + c1c2 + d1d2)(x4)4 − (a1a2 + b1b2)(x4)2

and
g(X,Y ) = a1a2 + b1b2 + c1c2 − d1d2.

By virtue of the above we have the following:

(∇e1S)(X, Y ) = (x4)4(a1d2 + a2d1)[6(x4)2 − 1],

(∇e2S)(X, Y ) = (x4)4(b1d2 + b2d1)[6(x4)2 − 1],

(∇e3S)(X, Y ) = 3(c1d2 + c2d1)(x4)6, and

(∇e4S)(X, Y ) = 0.

We shall now show that this (LCS)4-manifold is a generalized Ricci recurrent,
i.e., it satisfies the relation (5.1). Let us now consider the 1-forms

A(e1) = − (a1d2 + a2d1)
3(a1a2 + b1b2 + c1c2 + d1d2)

,

A(e2) = − (b1d2 + b2d1)
3(a1a2 + b1b2 + c1c2 + d1d2)

,

A(e3) = − (x4)2(c1d2 + c2d1)
(a1a2 + b1b2 + c1c2 + d1d2)

, A(e4) = 0,

B(e1) =
(x4)2(a1d2 + a2d1)[(a1a2 + b1b2){18(x4)4 − 1}+ 18(c1c2 + d1d2)(x2)4]

3(a1a2 + b1b2 + c1c2 + d1d2)(a1a2 + b1b2 + c1c2 − d1d2)
,

B(e2) =
(x4)2(b1d2 + b2d1)[(a1a2 + b1b2){18(x4)4 − 1}+ 18(c1c2 + d1d2)(x4)4]

3(a1a2 + b1b2 + c1c2 + d1d2)(a1a2 + b1b2 + c1c2 − d1d2)
,

B(e3) =
(x4)4(c1d2 + c2d1)(a1a2 + b1b2)

(a1a2 + b1b2 + c1c2 + d1d2)(a1a2 + b1b2 + c1c2 − d1d2)
, B(e4) = 0
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at any point x ∈ M . In our M4, (5.1) reduces with these 1-forms to the
following equations:

(i) (∇e1S)(X,Y ) = A(e1)S(X, Y ) + B(e1)g(X,Y ),

(ii) (∇e2S)(X, Y ) = A(e2)S(X, Y ) + B(e2)g(X, Y ),
(iii) (∇e3S)(X, Y ) = A(e3)S(X,Y ) + B(e3)g(X, Y ),
(iv) (∇e4S)(X,Y ) = A(e4)S(X,Y ) + B(e4)g(X, Y ).

This shows that the manifold under consideration is a generalized Ricci re-
current (LCS)4-manifold which is neither Ricci-symmetric nor Ricci-recurrent.
This leads to the following:

Theorem 6.2. There exists a generalized Ricci recurrent (LCS)4-manifold
which is neither Ricci-symmetric nor Ricci-recurrent.
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