SOME RESULTS ON $(L C S)_{n}$-MANIFOLDS

Absos Ali Shaikh

Abstract

The object of the present paper is to study $(L C S)_{n}$-manifolds. Several interesting results on a $(L C S)_{n}$-manifold are obtained. Also the generalized Ricci recurrent $(L C S)_{n}$-manifolds are studied. The existence of such a manifold is ensured by several non-trivial new examples.

1. Introduction

Recently the present author [6] introduced the notion of Lorentzian concircular structure manifolds (briefly $(L C S)_{n}$-manifolds) with an example. The present paper deals with a study of various types of $(L C S)_{n}$-manifolds. After preliminaries, in Section 3 we study the fundamental results of $(L C S)_{n^{-}}$ manifolds and proved that in such a manifold the Ricci operator commutes with the structure tensor ϕ. Section 4 is devoted to the study of conformally flat $(L C S)_{n}$-manifolds and it is proved that such a $(L C S)_{n}$-manifold is η-Einstein as well as a manifold of quasi constant curvature. The notion of generalized Ricci recurrent manifold was introduced by De, Guha, and Kamilya [2] in 1995. Section 5 is concerned with generalized Ricci recurrent $(L C S)_{n}$-manifolds and in the last section we investigate the existence of such a manifold and found various new examples of both in even and odd dimensions.

2. $(L C S)_{n}$-manifolds

An n-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type $(0,2)$ such that for each point $p \in M$, the tensor $g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ is a non-degenerate inner product of signature $(-,+, \ldots,+)$, where $T_{p} M$ denotes the tangent vector space of M at p and \mathbb{R} is the real number space. A non-zero vector $v \in T_{p} M$ is said to be timelike (resp., non-spacelike, null, spacelike) if it satisfies $g_{p}(v, v)<0$ (resp., $\leq 0,=0,>0$) [5]. The category to which a given vector falls is called its causal character.

[^0]Definition 2.1. In a Lorentzian manifold (M, g) a vector field P defined by

$$
g(X, P)=A(X)
$$

for any $X \in \chi(M)$ is said to be a concircular vector field if

$$
\left(\nabla_{X} A\right)(Y)=\alpha\{g(X, Y)+\omega(X) A(Y)\}
$$

where α is a non-zero scalar and ω is a closed 1-form.
Let M^{n} be a Lorentzian manifold admitting a unit timelike concircular vector field ξ, called the characteristic vector field of the manifold. Then we have

$$
\begin{equation*}
g(\xi, \xi)=-1 \tag{2.1}
\end{equation*}
$$

Since ξ is a unit concircular vector field, it follows that there exists a non-zero 1-form η such that for

$$
\begin{equation*}
g(X, \xi)=\eta(X) \tag{2.2}
\end{equation*}
$$

the equation of the following form holds

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\alpha\{g(X, Y)+\eta(X) \eta(Y)\} \quad(\alpha \neq 0) \tag{2.3}
\end{equation*}
$$

for all vector fields X, Y, where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g and α is a non-zero scalar function satisfies

$$
\begin{equation*}
\nabla_{X} \alpha=(X \alpha)=d \alpha(X)=\rho \eta(X) \tag{2.4}
\end{equation*}
$$

ρ being a certain scalar function given by $\rho=-(\xi \alpha)$. If we put

$$
\begin{equation*}
\phi X=\frac{1}{\alpha} \nabla_{X} \xi \tag{2.5}
\end{equation*}
$$

then from (2.3) and (2.5) we have

$$
\begin{equation*}
\phi X=X+\eta(X) \xi \tag{2.6}
\end{equation*}
$$

from which it follows that ϕ is a symmetric $(1,1)$ tensor and called the structure tensor of the manifold. Thus the Lorentzian manifold M^{n} together with the unit timelike concircular vector field ξ, its associated 1-form η and $(1,1)$ tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly $(L C S)_{n^{-}}$ manifold) [6]. Especially, if we take $\alpha=1$, then we can obtain the LP-Sasakian structure of Matsumoto [4]. In a $(L C S)_{n}$-manifold, the following relations hold [6]:
(2.7)
a) $\eta(\xi)=-1$, b) $\phi \xi=0$, c) $\eta(\phi X)=0$, d) $g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y)$,

$$
\begin{gather*}
\eta(R(X, Y) Z)=\left(\alpha^{2}-\rho\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{2.8}\\
S(X, \xi)=(n-1)\left(\alpha^{2}-\rho\right) \eta(X) \tag{2.9}\\
R(X, Y) \xi=\left(\alpha^{2}-\rho\right)[\eta(Y) X-\eta(X) Y] \tag{2.10}\\
\left(\nabla_{X} \phi\right)(Y)=\alpha\{g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X\} \tag{2.11}
\end{gather*}
$$

for all vector fields X, Y, Z, where R, S denote respectively the curvature tensor and the Ricci tensor of the manifold.

3. Fundamental results of $(L C S)_{n}$-manifolds

Proposition 3.1. $A(L C S)_{n}$-manifold of constant curvature is a manifold of constant curvature $\left(\alpha^{2}-\rho\right)$.
Proof. If a $(L C S)_{n}$-manifold is of constant curvature k, say, then we have

$$
R(X, Y) Z=k[g(Y, Z) X-g(X, Z) Y]
$$

which yields by setting $Z=\xi$ that

$$
R(X, Y) \xi=k[\eta(Y) X-\eta(X) Y]
$$

This implies by virtue of (2.10) that $k=\left(\alpha^{2}-\rho\right)$. Hence the proposition is proved.

Lemma 3.1. In a $(L C S)_{n}$-manifold, the following relation holds:

$$
\begin{equation*}
(X \rho)=d \rho(X)=\beta \eta(X) \tag{3.1}
\end{equation*}
$$

for any vector field X and β is a certain scalar function.
Proof. From (2.4), it follows that

$$
\nabla(d \alpha)(Y, X)=\nabla_{X}(d \alpha)(Y)=X(Y \alpha)-\left(\left(\nabla_{X} Y\right) \alpha\right)
$$

which implies that

$$
\begin{equation*}
\nabla(d \alpha)(X, Y)=(d \alpha)(Y, X) \tag{3.2}
\end{equation*}
$$

Also

$$
\nabla(d \alpha)(Y, X)=Y(d \alpha(X))-d \alpha\left(\nabla_{Y} X\right)
$$

which implies by virtue of (2.3) and (2.4) that

$$
\nabla(d \alpha)(Y, X)=(Y \rho) \eta(X)+\rho \alpha[g(X, Y)+\eta(X) \eta(Y)] .
$$

This implies by virtue of (2.2) that

$$
(X \rho) \eta(Y)=(Y \rho) \eta(X)
$$

which yields

$$
(X \rho)=\beta \eta(X)
$$

where $\beta=-(\xi \rho)$ is a scalar function. Hence the result holds.
Lemma 3.2. Let $M^{n}(\phi, \xi, \eta, g)$ be a $(L C S)_{n}$-manifold. Then for any X, Y, Z on M^{n}, the following relation holds:
(3.3) $R(X, Y) \phi Z-\phi R(X, Y) Z=\left(\alpha^{2}-\rho\right)[\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \xi$

$$
+\eta(Z)\{\eta(X) Y-\eta(Y) X\}] .
$$

Proof. From (2.3)-(2.7), (2.11) and the Ricci identity we can easily get (3.3).

Lemma 3.3. Let $\left(M^{n}, g\right)$ be a $(L C S)_{n}$-manifold. Then

$$
\begin{align*}
g(\phi R(\phi X, \phi Y) Z, \phi W)= & g(R(X, Y) Z, W)+\left(\alpha^{2}-\rho\right)[\{g(Y, W) \eta(Z) \tag{3.4}\\
& -g(Y, Z) \eta(W)\} \eta(X)+\{g(X, W) \eta(Z) \\
& -g(X, Z) \eta(W)\} \eta(Y)]
\end{align*}
$$

for any vector field X, Y, Z, W on M^{n}.
Proof. Using (2.6), (2.8) and $\eta(\phi X)=0$, we can calculate

$$
\begin{aligned}
g(\phi R(\phi X, \phi Y) Z, \phi W)= & g(R(\phi X, \phi Y) Z, W)=g(R(Z, W) \phi X, \phi Y) \\
= & g(\phi R(Z, W) X, \phi Y)+\left(\alpha^{2}-\rho\right)[g(W, \phi Y) \eta(X) \eta(Z) \\
& -g(Z, \phi Y) \eta(X) \eta(W)] .
\end{aligned}
$$

The relation (3.4) follows from this and

$$
g(R(Z, W) X, Y)=g(R(X, Y) Z, W)
$$

Lemma 3.4. Let $\left(M^{n}, g\right)$ be a $(L C S)_{n}$-manifold. Then for any X, Y, Z on M^{n}, the following relation holds:

$$
\begin{align*}
g(R(\phi X, \phi Y) \phi Z, \phi W)= & g(R(X, Y) Z, W)+\left(\alpha^{2}-\rho\right)[\{g(Y, W) \eta(Z) \tag{3.5}\\
& -g(Y, Z) \eta(W)\} \eta(X)+\{g(X, W) \eta(Z) \\
& -g(X, Z) \eta(W)\} \eta(Y)] .
\end{align*}
$$

Proof. Replacing X, Y by $\phi X, \phi Y$ respectively in (3.3) and taking the inner product on both sides by ϕW we get

$$
\begin{equation*}
g(R(\phi X, \phi Y) \phi Z, \phi W)=g(\phi R(\phi X, \phi Y) Z, \phi W) \tag{3.6}
\end{equation*}
$$

Using (3.4) in (3.6) we obtain (3.5).
Theorem 3.1. Let $\left(M^{n}, g\right)$ be a $(L C S)_{n}$-manifold. Then the Ricci operator Q commutes with ϕ.
Proof. To prove the result, we shall show that

$$
\begin{equation*}
Q \phi=\phi Q \tag{3.7}
\end{equation*}
$$

From (3.2), it follows that

$$
\begin{align*}
\phi R(\phi X, \phi Y) \phi Z= & R(X, Y) Z+\left(\alpha^{2}-\rho\right)[\eta(X)\{\eta(Z) Y-g(Y, Z) \xi\} \tag{3.8}\\
& +\eta(Y)\{\eta(Z) X-g(X, Z) \xi\}]
\end{align*}
$$

We now consider the following two cases:
(i) $\operatorname{dim} M=n=$ odd $=2 m+1$,
(ii) $\operatorname{dim} M=n=$ even $=2 m+2$.

Case (i): If $n=2 m+1$, let $\left\{e_{i}, \phi e_{i}, \xi\right\}, i=1,2, \ldots, m$ be an orthonormal frame at any point of the manifold. Then putting $Y=Z=e_{i}$ in (3.8) and taking summation over i and using $\eta\left(e_{i}\right)=0$, we get

$$
\begin{equation*}
\sum_{i=1}^{m} \epsilon_{i} \phi R\left(\phi X, \phi e_{i}\right) \phi e_{i}=\sum_{i=1}^{m} \epsilon_{i} R\left(X, e_{i}\right) e_{i}-m\left(\alpha^{2}-\rho\right) \eta(X) \xi \tag{3.9}
\end{equation*}
$$

where $\epsilon_{i}=g\left(e_{i}, e_{i}\right)$.
Again setting $Y=Z=\phi e_{i}$ in (3.8) and taking summation over i and then using $\eta \circ \phi=0$ and (2.1) we get

$$
\begin{equation*}
\sum_{i=1}^{m} \epsilon_{i} \phi R\left(\phi X, e_{i}\right) e_{i}=\sum_{i=1}^{m} \epsilon_{i} R\left(X, \phi e_{i}\right) \phi e_{i}-m\left(\alpha^{2}-\rho\right) \eta(X) \xi \tag{3.10}
\end{equation*}
$$

Adding (3.9) and (3.10) and using the definition of the Ricci operator, we obtain

$$
\phi(Q \phi X-R(\phi X, \xi) \xi)=Q X-R(X, \xi) \xi-2 m\left(\alpha^{2}-\rho\right) \eta(X) \xi
$$

Using (2.10) and $\phi \xi=0$ in the above relation we have

$$
\phi Q \phi X=Q X-2 m\left(\alpha^{2}-\rho\right) \eta(X) \xi
$$

Operating both sides by ϕ and using (2.1), symmetry of $Q, \phi \xi=0$ and (2.9) we get (3.7).

Case (ii): If $n=2 m+2$, let $\left\{e_{i}, \phi e_{i}\right\}, i=1,2, \ldots, m+1$ be an orthonormal frame such that each e_{i} is orthogonal to ξ, i.e., $\eta\left(e_{i}\right)=0$. Then putting $Y=Z=e_{i}$ in (3.8) and taking summation over i and using $\eta\left(e_{i}\right)=0$, we get

$$
\begin{equation*}
\sum_{i=1}^{m+1} \epsilon_{i} \phi R\left(\phi X, \phi e_{i}\right) \phi e_{i}=\sum_{i=1}^{m+1} \epsilon_{i} R\left(X, e_{i}\right) e_{i}-(m+1)\left(\alpha^{2}-\rho\right) \eta(X) \xi \tag{3.11}
\end{equation*}
$$

where $\epsilon_{i}=g\left(e_{i}, e_{i}\right)$.
Again replacing Y and Z by ϕe_{i} in (3.8) and taking summation over i and then using $\eta\left(e_{i}\right)=0$ and (2.1), it follows that

$$
\begin{equation*}
\sum_{i=1}^{m+1} \epsilon_{i} \phi R\left(\phi X, e_{i}\right) e_{i}=\sum_{i=1}^{m+1} \epsilon_{i} R\left(X, \phi e_{i}\right) \phi e_{i}-(m+1)\left(\alpha^{2}-\rho\right) \eta(X) \xi \tag{3.12}
\end{equation*}
$$

Adding (3.11) and (3.12) and then proceeding similarly as in Case (i) we can easily obtain (3.7). This proves the theorem.

Proposition 3.2. In a $(L C S)_{n}$-manifold the relation

$$
\begin{equation*}
S(\phi X, \phi Y)=(n-1)\left(\alpha^{2}-\rho\right) g(X, Y)+S(X, Y) \tag{3.13}
\end{equation*}
$$

holds.
Proof. The proposition follows from Theorem 3.1.

4. Conformally flat $(L C S)_{n}$-manifolds

This section deals with conformally flat $(L C S)_{n}(n \geq 4)$ manifolds.
Definition 4.1. A $(L C S)_{n}$-manifold is said to be η-Einstein if its Ricci tensor S of type $(0,2)$ is of the form

$$
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y)
$$

where a, b are the smooth functions over the manifold such that b is non-zero.
Theorem 4.1. A conformally flat $(L C S)_{n}(n \geq 4)$ manifold is an η-Einstein manifold.

Proof. If a $(L C S)_{n}(n \geq 4)$ manifold is conformally flat, then its curvature tensor is given by
(4.1) $R(X, Y) Z=\frac{1}{n-2}[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y]$

$$
-\frac{r}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y] .
$$

Setting $Z=\xi$ in (4.1) and then using (2.9) and (2.10) we obtain
(4.2) $\quad\left(\alpha^{2}-\rho\right)[\eta(Y) X-\eta(X) Y]=\frac{1}{n-2}\left[(n-1)\left(\alpha^{2}-\rho\right)\{\eta(Y) X-\eta(X) Y\}\right.$

$$
+\eta(Y) Q X-\eta(X) Q Y]
$$

$$
-\frac{r}{(n-1)(n-2)}[\eta(Y) X-\eta(X) Y]
$$

Again replacing Y by ξ in (4.2) we obtain by virtue of (2.9) that

$$
\begin{equation*}
Q X=\left[\frac{r}{n-1}-\left(\alpha^{2}-\rho\right)\right] X-\left[\frac{r}{n-1}-n\left(\alpha^{2}-\rho\right)\right] \eta(X) \xi \tag{4.3}
\end{equation*}
$$

which can also be written as
(4.4) $S(X, Y)=\left[\frac{r}{n-1}-\left(\alpha^{2}-\rho\right)\right] g(X, Y)-\left[\frac{r}{n-1}-n\left(\alpha^{2}-\rho\right)\right] \eta(X) \eta(Y)$
which implies that the manifold is η-Einstein.
Corollary 4.1. $A(L C S)_{3}$ manifold is an η-Einstein manifold.
Proof. Since in a 3-dimensional Lorentzian manifold, the Weyl conformal curvature tensor vanishes, it follows that (4.1) holds for $n=3$ and hence it can be easily shown that a $(L C S)_{3}$ manifold is always an η-Einstein manifold.
Definition 4.2. A Riemannian manifold $\left(M^{n}, g\right)(n \geq 4)$ is said to be of quasiconstant curvature if it is conformally flat and its curvature tensor \tilde{R} of type $(0,4)$ has the following form:

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{4.5}\\
& +b[g(X, W) A(Y) A(Z)-g(Y, W) A(X) A(Z) \\
& +g(Y, Z) A(X) A(W)-g(X, Z) A(Y) A(W)],
\end{align*}
$$

where A is a 1 -form and a, b are scalars of which $b \neq 0$.
This notion of quasi-constant curvature was introduced by Chen and Yano [1].

Theorem 4.2. A conformally flat $(\operatorname{LCS})_{n}(n \geq 4)$ manifold is of quasiconstant curvature.

Proof. By virtue of (4.3) and (4.4), the relation (4.1) takes the form

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & \tilde{a}[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{4.6}\\
& +\tilde{b}[g(X, W) \eta(Y) \eta(Z)-g(Y, W) \eta(X) \eta(Z) \\
& +g(Y, Z) \eta(X) \eta(W)-g(X, Z) \eta(Y) \eta(W)]
\end{align*}
$$

where $\tilde{a}=\frac{1}{n-2}\left[\frac{r}{n-1}-2\left(\alpha^{2}-\rho\right)\right]$ and $\tilde{b}=\frac{1}{n-2}\left[\frac{r}{n-1}-n\left(\alpha^{2}-\rho\right)\right]$ are smooth functions. Here $\tilde{b} \neq 0$ as for $\tilde{b}=0$, (4.4) yields that the manifold is Einstein, but the manifold under consideration is η-Einstein. Hence comparing (4.5) and (4.6), the theorem is proved.

5. Generalized Ricci recurrent ($L C S)_{n}$-manifold

Definition 5.1. A $(L C S)_{n}$-manifold is said to be generalized Ricci recurrent [2] if its Ricci tensor S of type $(0,2)$ satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=A(X) S(Y, Z)+B(X) g(Y, Z) \tag{5.1}
\end{equation*}
$$

where A and B are two non-zero 1-forms such that $A(X)=g(X, P)$ and $B(X)=g(X, L), P$ and L being associated vector fields of the 1-form A and B, respectively.

Theorem 5.1. In a generalized Ricci recurrent $(L C S)_{n}(n \geq 4)$ manifold, the 1 -form A and B are related by

$$
\begin{equation*}
B(X)=(n-1)\left[(2 \alpha \rho-\beta) \eta(X)-\left(\alpha^{2}-\rho\right) A(X)\right] \tag{5.2}
\end{equation*}
$$

Proof. In a generalized Ricci recurrent $(L C S)_{n}$-manifold, we have the relation (5.1). Setting $Z=\xi$ in (5.1) we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \xi)=\left[\left(\alpha^{2}-\rho\right) A(X)+B(X)\right] \eta(Y) \tag{5.3}
\end{equation*}
$$

Again

$$
\left(\nabla_{X} S\right)(Y, \xi)=\nabla_{X} S(Y, \xi)-S\left(\nabla_{X} Y, \xi\right)-S\left(Y, \nabla_{X} \xi\right)
$$

which yields by virtue of (2.3), (2.4), (2.9), and (3.1) that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \xi)=(n-1)\left[(2 \alpha \rho-\beta) \eta(X) \eta(Y)+\alpha\left(\alpha^{2}-\rho\right) g(X, Y)\right]-\alpha S(X, Y) \tag{5.4}
\end{equation*}
$$

From (5.3) and (5.4), it follows that

$$
\begin{align*}
\alpha S(X, Y)= & (n-1)\left[(2 \alpha \rho-\beta) \eta(X) \eta(Y)+\alpha\left(\alpha^{2}-\rho\right) g(X, Y)\right. \tag{5.5}\\
& \left.-\left(\alpha^{2}-\rho\right) A(X) \eta(Y)\right]-B(X) \eta(Y)
\end{align*}
$$

Replacing Y by ξ in (5.5) we obtain (5.2). This proves the theorem.

Theorem 5.2. A generalized Ricci recurrent $(L C S)_{n}$-manifold is Einstein if and only if $\beta=2 \alpha \rho$.
Proof. In a generalized Ricci recurrent $(L C S)_{n}$-manifold we have the relation (5.5). Hence setting $Y=\phi Y$ in (5.5) and then using (2.7) we have

$$
\begin{equation*}
S(X, Y)=(n-1)\left(\alpha^{2}-\rho\right) g(X, Y) \tag{5.6}
\end{equation*}
$$

If the manifold under consideration is Einstein, then (5.6) implies $\alpha^{2}-\rho=$ constant and hence $2 \alpha \rho-\beta=0$. Conversely, if $2 \alpha \rho-\beta=0$, then $\nabla_{X}\left(\alpha^{2}-\rho\right)=$ 0 . Consequently $\alpha^{2}-\rho=$ constant.

Theorem 5.3. In an Einstein generalized Ricci recurrent $(L C S)_{n}$-manifold the associated 1-forms are linearly dependent and the vector fields of the associated 1 -forms are of opposite direction for $\alpha^{2}-\rho>0$.

Proof. In a generalized Ricci recurrent $(L C S)_{n}$-manifold we have the relation (5.5). If such a manifold is Einstein, then $\alpha^{2}-\rho$ is constant and hence $2 \alpha \rho-\beta=$ 0 . Consequently (5.2) reduces to

$$
\begin{equation*}
B(X)+k A(X)=0 \tag{5.7}
\end{equation*}
$$

where $k=(n-1)\left(\alpha^{2}-\rho\right)=$ constant. This proves the theorem.
Theorem 5.4. A generalized Ricci recurrent $(L C S)_{n}(n \geq 4)$ manifold is Ricci symmetric if and only if $\beta=2 \alpha \rho$.
Proof. In a generalized Ricci recurrent $(L C S)_{n}$-manifold we have the relation (5.6) from which it follows that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=(n-1)(2 \alpha \rho-\beta) \eta(X) g(Y, Z) \tag{5.8}
\end{equation*}
$$

If in a generalized Ricci recurrent $(L C S)_{n}$-manifold $\alpha^{2}-\rho$ is constant, then the relation (5.7) holds. Hence using (5.7) in (5.1) we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=A(X)[S(Y, Z)-k g(Y, Z)] \tag{5.9}
\end{equation*}
$$

This implies by virtue of (5.6) that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=0 \tag{5.10}
\end{equation*}
$$

Conversely, if (5.10) holds, then (5.8) implies that $2 \alpha \rho-\beta=0$ and hence $\alpha^{2}-\rho=$ constant. This proves the theorem.
Definition 5.2. The Ricci tensor of a generalized Ricci recurrent $(L C S)_{n^{-}}$ manifold is said to be η-parallel if it satisfies

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(\phi X, \phi Y)=0 \tag{5.11}
\end{equation*}
$$

for all vector fields X, Y and Z on M.
The notion of Ricci η-parallelity was first introduced by M. Kon [3] for the Sasakian manifolds.
Theorem 5.5. The Ricci tensor of a generalized Ricci recurrent (LCS $)_{n}(n \geq$ 4) manifold is η-parallel if and only if the manifold is Einstein.

Proof. The Ricci tensor of a generalized Ricci recurrent $(L C S)_{n}$-manifold is η-parallel if and only if the following relation holds [6]

$$
\begin{align*}
\left(\nabla_{Z} S\right)(X, Y)= & \alpha[S(Y, Z) \eta(X)+S(X, Z) \eta(Y)] \tag{5.12}\\
& -(n-1)[(2 \alpha \rho-\beta) \eta(X) \eta(Y) \eta(Z) \\
& \left.+\alpha\left(\alpha^{2}-\rho\right)\{g(X, Z) \eta(Y)+g(Y, Z) \eta(X)\}\right] .
\end{align*}
$$

Again in a generalized Ricci recurrent $(L C S)_{n}$-manifold, the relations (5.5) and (5.6) hold. Therefore in view of (5.6), (5.8) and (5.12) we obtain $2 \alpha \rho-\beta=0$ and hence $\alpha^{2}-\rho=$ constant. Consequently (5.6) implies that the manifold under consideration is Einstein. Conversely, if $2 \alpha \rho-\beta=0$, then $\nabla_{X}\left(\alpha^{2}-\rho\right)=0$. Thus if a generalized Ricci recurrent $(L C S)_{n}$-manifold is Einstein, then we have $\alpha^{2}-\rho=$ constant and hence the relation (5.10) holds, which implies that

$$
\left(\nabla_{Z} S\right)(\phi X, \phi Y)=0
$$

for all X, Y and Z on M. Therefore the Ricci tensor of the manifold under consideration is η-parallel. Thus the theorem is proved.

6. Examples of $(L C S)_{n}$-manifolds

Example 6.1. We consider the 3 -dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be linearly independent global frame on M given by

$$
e_{1}=e^{-z}\left(\frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right), \quad e_{2}=e^{-z} \frac{\partial}{\partial y}, \quad e_{3}=e^{-2 z} \frac{\partial}{\partial z}
$$

Let g be the Lorentzian metric defined by $g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0$, $g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=1, g\left(e_{3}, e_{3}\right)=-1$. Let η be the 1 -form defined by $\eta(U)=g\left(U, e_{3}\right)$ for any $U \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi e_{1}=e_{1}, \phi e_{2}=e_{2}, \phi e_{3}=0$. Then using the linearity of ϕ and g we have $\eta\left(e_{3}\right)=-1, \phi^{2} U=U+\eta(U) e_{3}$ and $g(\phi U, \phi W)=g(U, W)+\eta(U) \eta(W)$ for any $U, W \in \chi(M)$. Thus for $e_{3}=\xi,(\phi, \xi, \eta, g)$ defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g and R be the curvature tensor of g. Then we have

$$
\left[e_{1}, e_{2}\right]=-e^{-z} e_{2}, \quad\left[e_{1}, e_{3}\right]=e^{-2 z} e_{1}, \quad\left[e_{2}, e_{3}\right]=e^{-2 z} e_{2}
$$

Taking $e_{3}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{array}{ccc}
\nabla_{e_{1}} e_{3}=e^{-2 z} e_{1}, & \nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{1}=e^{-2 z} e_{3}, \\
\nabla_{e_{2}} e_{3}=e^{-2 z} e_{2}, & \nabla_{e_{2}} e_{2}=e^{-2 z} e_{3}-e^{-z} e_{1}, & \nabla_{e_{2}} e_{1}=e^{-2 z} e_{2}, \\
\nabla_{e_{3}} e_{3}=0, & \nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{1}=0
\end{array}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is a $(L C S)_{3}$ structure on M. Consequently $M^{3}(\phi, \xi, \eta, g)$ is a $(L C S)_{3}$-manifold with $\alpha=e^{-2 z} \neq 0$ such
that $(X \alpha)=\rho \eta(X)$, where $\rho=2 e^{-4 z}$. Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows:
$R\left(e_{2}, e_{3}\right) e_{3}=e^{-4 z} e_{2}, \quad R\left(e_{1}, e_{3}\right) e_{3}=e^{-4 z} e_{1}, \quad R\left(e_{1}, e_{2}\right) e_{2}=e^{-4 z} e_{1}-e^{-2 z} e_{1}$,
$R\left(e_{2}, e_{3}\right) e_{2}=e^{-4 z} e_{3}, \quad R\left(e_{1}, e_{3}\right) e_{1}=e^{-4 z} e_{3}, \quad R\left(e_{1}, e_{2}\right) e_{1}=-e^{-4 z} e_{2}+e^{-2 z} e_{2}$ and the components which can be obtained from these by the symmetry properties from which, we can easily calculate the non-vanishing components of the Ricci tensor S as follows:

$$
S\left(e_{1}, e_{1}\right)=2 e^{-4 z}-e^{-2 z}, \quad S\left(e_{2}, e_{2}\right)=2 e^{-4 z}-e^{-2 z}, \quad S\left(e_{3}, e_{3}\right)=2 e^{-4 z} .
$$

Since $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a frame field for $(L C S)_{3}$-manifold, any vector field $X, Y \in$ $\chi(M)$ can be written as

$$
X=a_{1} e_{1}+b_{1} e_{2}+c_{1} e_{3}
$$

and

$$
Y=a_{2} e_{1}+b_{2} e_{2}+c_{2} e_{3},
$$

where $a_{i}, b_{i}, c_{i} \in \mathbb{R}^{+}$($=$the set of positive real numbers), $i=1,2,3$, such that $c_{1} c_{2} \neq a_{1} a_{2}+b_{1} b_{2}$. Hence

$$
S(X, Y)=2\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right) e^{-4 z}-\left(a_{1} a_{2}+b_{1} b_{2}\right) e^{-2 z}
$$

and

$$
g(X, Y)=a_{1} a_{2}+b_{1} b_{2}-c_{1} c_{2} .
$$

By virtue of the above we have the following:

$$
\begin{gathered}
\left(\nabla_{e_{1}} S\right)(X, Y)=\left(a_{1} c_{2}+a_{2} c_{1}\right)\left(e^{-4 z}-4 e^{-6 z}\right), \\
\left(\nabla_{e_{2}} S\right)(X, Y)=\left(b_{1} c_{2}+b_{2} c_{1}\right)\left(e^{-4 z}-4 e^{-6 z}\right)
\end{gathered}
$$

and

$$
\left(\nabla_{e_{3}} S\right)(X, Y)=0 .
$$

We shall show that this $(L C S)_{3}$-manifold is a generalized Ricci recurrent, i.e., it satisfies the relation (5.1). Let us now consider the 1-forms

$$
\begin{gathered}
A\left(e_{1}\right)=\frac{\left(a_{1} c_{2}+a_{2} c_{1}\right)}{2\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)}, \\
A\left(e_{2}\right)=\frac{\left(b_{1} c_{2}+b_{2} c_{1}\right)}{2\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)}, \\
A\left(e_{3}\right)=0, \\
B\left(e_{1}\right)=\frac{e^{-2 z}\left(a_{1} c_{2}+a_{2} c_{1}\right)\left[\left(a_{1} a_{2}+b_{1} b_{2}\right)\left(1-8 e^{-4 z}\right)-8 c_{1} c_{2} e^{-4 z}\right]}{2\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)\left(a_{1} a_{2}+b_{1} b_{2}-c_{1} c_{2}\right)}, \\
B\left(e_{2}\right)=\frac{e^{-2 z}\left(b_{1} c_{2}+b_{2} c_{1}\right)\left[\left(a_{1} a_{2}+b_{1} b_{2}\right)\left(1-8 e^{-4 z}\right)-8 c_{1} c_{2} e^{-4 z}\right]}{2\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)\left(a_{1} a_{2}+b_{1} b_{2}-c_{1} c_{2}\right)}, \\
B\left(e_{3}\right)=0
\end{gathered}
$$

at any point $x \in M$. In our M^{3}, (5.1) reduces with these 1 -forms to the following equations:
(i) $\left(\nabla_{e_{1}} S\right)(X, Y)=A\left(e_{1}\right) S(X, Y)+B\left(e_{1}\right) g(X, Y)$,
(ii) $\left(\nabla_{e_{2}} S\right)(X, Y)=A\left(e_{2}\right) S(X, Y)+B\left(e_{2}\right) g(X, Y)$,
(iii) $\left(\nabla_{e_{3}} S\right)(X, Y)=A\left(e_{3}\right) S(X, Y)+B\left(e_{3}\right) g(X, Y)$.

This shows that the manifold under consideration is a generalized Ricci recurrent $(L C S)_{3}$-manifold which is neither Ricci-symmetric nor Ricci-recurrent. Hence we can state the following:

Theorem 6.1. There exists a generalized Ricci recurrent $(L C S)_{3}$-manifold which is neither Ricci-symmetric nor Ricci-recurrent.

Example 6.2. We consider the 4-dimensional manifold $M=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\right.$ $\left.\mathbb{R}^{4} \mid x_{4} \neq 0\right\}$, where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ are the standard coordinates in \mathbb{R}^{4}. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be linearly independent global frame on M given by
$e_{1}=x_{4}\left(\frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}\right), e_{2}=x_{4} \frac{\partial}{\partial x_{2}}, e_{3}=x_{4}\left(\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}}\right), e_{4}=\left(x_{4}\right)^{3} \frac{\partial}{\partial x_{4}}$.
We define ϕ, ξ, η, g by $\phi e_{1}=e_{1}, \phi e_{2}=e_{2}, \phi e_{3}=e_{3}, \phi e_{4}=0, \xi=\left(x_{4}\right)^{3} \frac{\partial}{\partial x_{4}}$, $\eta(X)=g\left(X, e_{4}\right)$ for any $X \in \chi(M), g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1$, $g\left(e_{4}, e_{4}\right)=-1, g\left(e_{i}, e_{j}\right)=0$ for $i \neq j, i, j=1,2,3,4$.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Then we have
$\left[e_{1}, e_{2}\right]=-x_{4} e_{2},\left[e_{1}, e_{4}\right]=-\left(x_{4}\right)^{2} e_{1},\left[e_{2}, e_{4}\right]=-\left(x_{4}\right)^{2} e_{2},\left[e_{3}, e_{4}\right]=-\left(x_{4}\right)^{2} e_{3}$.
Taking $e_{4}=\xi$ and using Koszul formula for the Lorentzian metric g, we can easily calculate

$$
\begin{gathered}
\nabla_{e_{1}} e_{4}=-\left(x_{4}\right)^{2} e_{1}, \quad \nabla_{e_{2}} e_{1}=x_{4} e_{2}, \quad \nabla_{e_{1}} e_{1}=-\left(x_{4}\right)^{2} e_{4}, \quad \nabla_{e_{2}} e_{4}=-\left(x_{4}\right)^{2} e_{2} \\
\nabla_{e_{3}} e_{4}=-\left(x_{4}\right)^{2} e_{3}, \quad \nabla_{e_{3}} e_{3}=-\left(x_{4}\right)^{2} e_{4} . \quad \nabla_{e_{2}} e_{2}=-\left(x_{4}\right)^{2} e_{4}-x_{4} e_{1}
\end{gathered}
$$

From the above it can be easily seen that (ϕ, ξ, η, g) is an $(L C S)_{4}$ structure on M. Consequently $M^{4}(\phi, \xi, \eta, g)$ is an $(L C S)_{4}$-manifold with $\alpha=-\left(x_{4}\right)^{2} \neq 0$ such that $(X \alpha)=\rho \eta(X)$, where $\rho=2\left(x_{4}\right)^{4}$.

Using the above relations, we can easily calculate the non-vanishing components of the curvature tensor as follows:

$$
\begin{aligned}
& R\left(e_{1}, e_{4}\right) e_{1}=\left(x_{4}\right)^{4} e_{4}, \quad R\left(e_{2}, e_{4}\right) e_{2}=\left(x_{4}\right)^{4} e_{4}, \quad R\left(e_{3}, e_{4}\right) e_{3}=\left(x_{4}\right)^{4} e_{4}, \\
& R\left(e_{1}, e_{3}\right) e_{3}=\left(x_{4}\right)^{4} e_{1}, R\left(e_{1}, e_{3}\right) e_{1}=-\left(x_{4}\right)^{4} e_{3}, \quad R\left(e_{2}, e_{3}\right) e_{2}=-\left(x_{4}\right)^{4} e_{3}, \\
& R\left(e_{1}, e_{4}\right) e_{4}=\left(x_{4}\right)^{4} e_{1}, R\left(e_{2}, e_{4}\right) e_{4}=\left(x_{4}\right)^{4} e_{2}, \quad R\left(e_{1}, e_{2}\right) e_{2}=\left[\left(x_{4}\right)^{4}-\left(x_{4}\right)^{2}\right] e_{1}, \\
& R\left(e_{2}, e_{3}\right) e_{3}=\left(x_{4}\right)^{4} e_{2}, R\left(e_{3}, e_{4}\right) e_{4}=\left(x_{4}\right)^{4} e_{3}, \quad R\left(e_{1}, e_{2}\right) e_{1}=-\left[\left(x_{4}\right)^{4}-\left(x_{4}\right)^{2}\right] e_{2}
\end{aligned}
$$

and the components which can be obtained from these by the symmetry properties from which, we can easily calculate the non-vanishing components of the Ricci tensor S as follows:

$$
\begin{array}{ll}
S\left(e_{1}, e_{1}\right)=3\left(x_{4}\right)^{4}-\left(x_{4}\right)^{2}, & S\left(e_{3}, e_{3}\right)=3\left(x_{4}\right)^{4}, \\
S\left(e_{2}, e_{2}\right)=3\left(x_{4}\right)^{4}-\left(x_{4}\right)^{2}, & S\left(e_{4}, e_{4}\right)=3\left(x_{4}\right)^{4} .
\end{array}
$$

Since $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is a frame field for $(L C S)_{4}$-manifold, any vector field $X, Y \in \chi(M)$ can be written as

$$
X=a_{1} e_{1}+b_{1} e_{2}+c_{1} e_{3}+d_{1} e_{4}
$$

and

$$
Y=a_{2} e_{1}+b_{2} e_{2}+c_{2} e_{3}+d_{2} e_{4},
$$

where $a_{i}, b_{i}, c_{i}, d_{i} \in \mathbb{R}^{+}$(= the set of positive real numbers), $i=1,2,3,4$, such that $d_{1} d_{2} \neq a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$. Hence

$$
S(X, Y)=3\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}+d_{1} d_{2}\right)\left(x_{4}\right)^{4}-\left(a_{1} a_{2}+b_{1} b_{2}\right)\left(x_{4}\right)^{2}
$$

and

$$
g(X, Y)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}-d_{1} d_{2} .
$$

By virtue of the above we have the following:

$$
\begin{aligned}
& \left(\nabla_{e_{1}} S\right)(X, Y)=\left(x_{4}\right)^{4}\left(a_{1} d_{2}+a_{2} d_{1}\right)\left[6\left(x_{4}\right)^{2}-1\right], \\
& \left(\nabla_{e_{2}} S\right)(X, Y)=\left(x_{4}\right)^{4}\left(b_{1} d_{2}+b_{2} d_{1}\right)\left[6\left(x_{4}\right)^{2}-1\right], \\
& \left(\nabla_{e_{3}} S\right)(X, Y)=3\left(c_{1} d_{2}+c_{2} d_{1}\right)\left(x_{4}\right)^{6}, \quad \text { and } \\
& \left(\nabla_{e_{4}} S\right)(X, Y)=0 .
\end{aligned}
$$

We shall now show that this $(L C S)_{4}$-manifold is a generalized Ricci recurrent, i.e., it satisfies the relation (5.1). Let us now consider the 1-forms

$$
\begin{aligned}
& A\left(e_{1}\right)=-\frac{\left(a_{1} d_{2}+a_{2} d_{1}\right)}{3\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}+d_{1} d_{2}\right)}, \\
& A\left(e_{2}\right)=-\frac{\left(b_{1} d_{2}+b_{2} d_{1}\right)}{3\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}+d_{1} d_{2}\right)}, \\
& A\left(e_{3}\right)=-\frac{\left(x_{4}\right)^{2}\left(c_{1} d_{2}+c_{2} d_{1}\right)}{\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}+d_{1} d_{2}\right)}, \quad A\left(e_{4}\right)=0, \\
& B\left(e_{1}\right)=\frac{\left(x_{4}\right)^{2}\left(a_{1} d_{2}+a_{2} d_{1}\right)\left[\left(a_{1} a_{2}+b_{1} b_{2}\right)\left\{18\left(x_{4}\right)^{4}-1\right\}+18\left(c_{1} c_{2}+d_{1} d_{2}\right)\left(x_{2}\right)^{4}\right]}{3\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}+d_{1} d_{2}\right)\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}-d_{1} d_{2}\right)}, \\
& B\left(e_{2}\right)=\frac{\left(x_{4}\right)^{2}\left(b_{1} d_{2}+b_{2} d_{1}\right)\left[\left(a_{1} a_{2}+b_{1} b_{2}\right)\left\{18\left(x_{4}\right)^{4}-1\right\}+18\left(c_{1} c_{2}+d_{1} d_{2}\right)\left(x_{4}\right)^{4}\right]}{3\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}+d_{1} d_{2}\right)\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}-d_{1} d_{2}\right)}, \\
& B\left(e_{3}\right)=\frac{\left(x_{4}\right)^{4}\left(c_{1} d_{2}+c_{2} d_{1}\right)\left(a_{1} a_{2}+b_{1} b_{2}\right)}{\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}+d_{1} d_{2}\right)\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}-d_{1} d_{2}\right)}, \quad B\left(e_{4}\right)=0
\end{aligned}
$$

at any point $x \in M$. In our M^{4}, (5.1) reduces with these 1 -forms to the following equations:
(i) $\left(\nabla_{e_{1}} S\right)(X, Y)=A\left(e_{1}\right) S(X, Y)+B\left(e_{1}\right) g(X, Y)$,
(ii) $\left(\nabla_{e_{2}} S\right)(X, Y)=A\left(e_{2}\right) S(X, Y)+B\left(e_{2}\right) g(X, Y)$,
(iii) $\left(\nabla_{e_{3}} S\right)(X, Y)=A\left(e_{3}\right) S(X, Y)+B\left(e_{3}\right) g(X, Y)$,
(iv) $\left(\nabla_{e_{4}} S\right)(X, Y)=A\left(e_{4}\right) S(X, Y)+B\left(e_{4}\right) g(X, Y)$.

This shows that the manifold under consideration is a generalized Ricci recurrent $(L C S)_{4}$-manifold which is neither Ricci-symmetric nor Ricci-recurrent. This leads to the following:
Theorem 6.2. There exists a generalized Ricci recurrent $(L C S)_{4}$-manifold which is neither Ricci-symmetric nor Ricci-recurrent.

Acknowledgement. The author expresses his sincere thanks to the referees for their valuable suggestions in the improvement of the paper.

References

[1] B. Y. Chen and K. Yano, Hypersurfaces of a conformally flat space, Tensor (N.S.) 26 (1972), 318-322.
[2] U. C. De, N. Guha, and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (N.S.) 56 (1995), no. 3, 312-317.
[3] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), no. 3, 277-290.
[4] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
[5] B. O' Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
[6] A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003), no. 2, 305-314.

Department of Mathematics
University of Burdwan, Golapbag
Burdwan-713104
West Bengal, India
E-mail address: aask2003@yahoo.co.in

[^0]: Received July 13, 2006; Revised October 22, 2008.
 2000 Mathematics Subject Classification. 53C15, 53C25.
 Key words and phrases. $(L C S)_{n}$-manifold, conformally flat, generalized Ricci recurrent, η-Einstein, quasi constant curvature.

