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TWO–WEIGHT ESTIMATES FOR STRONG FRACTIONAL
MAXIMAL FUNCTIONS AND POTENTIALS WITH

MULTIPLE KERNELS

Vakhtang Kokilashvili and Alexander Meskhi

Abstract. In the paper two–weight inequalities of various type for strong
fractional maximal functions and potentials with multiple kernels defined
on R2 are established.

Introduction

In the present paper a full characterization of two-dimensional weight func-
tions v governing the trace inequality

‖Kα,βf‖Lq
v(R2) ≤ c‖f‖Lp(R2),

is given, where Kα,β is one of the following two-dimensional operators:

(Mα,βf)(x, y) = sup
I×J3(x,y)

1
|I|1−α|J |1−β

∫

I

∫

J

|f(t, τ)|dtdτ ;

(Iα,βf)(x, y) =
∫

R

∫

R
|x− t|α−1|y − τ |β−1f(t, τ)dtdτ ;

(IαJβf)(x, y) =
∫

R

∫

|τ |<2|y|
|x− t|α−1|y − τ |β−1f(t, τ)dtdτ ;

(MαIβf)(x, y) = sup
I3x

1
|I|1−α

∫

I

∣∣∣∣
∫

R
|y − τ |β−1f(t, τ)dτ

∣∣∣∣dt,

and I and J are arbitrary bounded intervals in R containing x and y respec-
tively. For the operator Iα,β we additionally assume that the weight v satisfies
the Muckenhoupt one-dimensional A∞(R) condition with respect to only one
variable uniformly to another one. Moreover, criteria guaranteeing the two–
weight inequality for these operators are obtained, provided that the weight
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on the right-hand side is a product of two one-dimensional weights. Dual in-
equalities of Fefferman-Stein type for strong fractional maximal functions and
potentials with product kernels are also established.

The one-weight problem for the operator Iα,β has been solved in [22]. From
the historical point of view we recall that the one-weight criteria for the Riesz
potentials

Iαf(x) =
∫

Rn

f(y)
|x− y|n−α

dy, 0 < α < n,

have been derived in [34]. The pioneering results concerning the two–weight
problem for Iα have been obtained in [40, 41], while Lp−Lq two–weight criteria
in more transparent form have been given in [14, 15] for 1 < p < q < ∞ (see
also [17, 42] regarding two–weight criteria for integral transforms with positive
kernels). Namely, the next statement holds.

Theorem A. Let 1 < p < q < ∞ and let 0 < α < n. Then Iα is bounded from
Lp

w(Rn) into Lq
v(Rn) if and only if

A1 := sup
x∈Rn;r>0

( ∫

B(x,2r)

v

)1/q( ∫

|x−y|>r

|x− y|(α−n)p′w1−p′(y)dy

)1/p′

< ∞

and

A2 := sup
x∈Rn;r>0

( ∫

B(x,2r)

w1−p′
)1/p′( ∫

|x−y|>r

|x− y|(α−n)qv(y)dy

)1/q

< ∞,

where p′ = p/(p−1) and B(x, r) is a ball with center x and radius r. Moreover,
there exist positive constants c1 and c2 depending only on p, q and α such that

c1 max{A1, A2} ≤ ‖Iα‖ ≤ c2 max{A1, A2}.

The proof of Theorem A is based on the two–weight weak-type criterion for
the Riesz potentials given in [38] and on more transparent one established in
[13, 15] (see also [25]). These criteria avoid the concept of capacity and can be
easily verified.

Earlier, a capacitary characterization of those measures which guarantee the
trace inequality for the operator Iα was derived in [3, 30].

In the case w ≡ 1, Theorem A (the trace inequality) has been obtained in
[1].

Theorem A’. Let 1 < p < q < ∞, 0 < α < n/p. Then the operator Iα is
bounded from Lp(Rn) to Lq

v(Rn) if and only if

A′ ≡ sup
x∈Rn;r>0

( ∫

B(x,r)

v(x)dx

)
rq(α−n/p) < ∞.

For p = q the following two–weight criterion of pointwise type is due to [31]
(see also [45] for more general case).
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Theorem B. Let 1 < p < ∞, 0 < α < 1/p. Then the operator Iα is bounded
from Lp(Rn) to Lp

v(Rn) if and only if Iαv ∈ Lp′

loc(Rn) and

A3 ≡ ess sup
x∈Rn

(
Iα[Iαv]p

′
(x)

Iαv(x)

)1/p′

< ∞.

Moreover,

c1A3 ≤ ‖Iα‖ ≤ c2A3,

where the constants c1 and c2 depend only on p and α.

For the solution of the two–weight problem for fractional maximal operators

Mαf(x) = sup
B3x

1
|B|1−α/n

∫

B

|f |, 0 < α < n,

where the supremum is taken over all balls B in Rn containing x, we refer
to [18, 36, 46] (see also [17]). A two–weight criterion for the strong Hardy-
Littlewood maximal functions has been obtained in [36], provided that the
weight on the right-hand side satisfies some additional conditions, for instance,
belongs to the Muckenhoupt Ap class in each variable separately, or is a product
of one–dimensional weights. For some two–weight inequalities for fractional
integrals and fractional maximal functions associated to starlike sets in Rn we
refer to [6].

Necessary and sufficient conditions guaranteeing the trace inequalities for
one-sided potentials with multiple kernels have been given in [26, 28, 29]. For
some properties of potentials with product kernels in unweighted case see, e.g.,
[35, Ch. 5].

Two-weight inequalities for potential type operators can be applied, for ex-
ample, to establish two-weight estimates for multipliers of Fourier transforms
(see, e.g., [9]).

The paper is organized as follows: In Section 1 we present some well-known
results concerning Carleson-Hörmander type inequality; doubling measures;
two–weight estimates for the Hardy transforms and the truncated potentials.
In Section 2 we formulate the main results of the paper, while in Section 3 we
prove them.

Constants (often different constants in the same series of inequalities) will
generally be denoted by c. For the real line and the set of all integers we will
use the symbols R and Z respectively. The Lebesgue measure of the measurable
set E ⊂ Rn will be denoted by |E|. We will also use the notation ρ(E) :=

∫
E

ρ
for the weight ρ on Rn and measurable set E ⊂ Rn. For a set I ⊂ R and t ∈ R,
I − t denotes the set {x− t : x ∈ I}.

Finally we mention that some of the results presented in this paper have
been announced in [27, 29].
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1. Preliminaries

Let ρ be an almost everywhere positive function on Rn. By the symbol
Lp

ρ(Rn) (1 < p < ∞) we denote the weighted Lebesgue space which is the set
of all measurable functions f : Rn → R for which

‖f‖Lp
ρ(Rn) =

( ∫

Rn

|f(x)|pρ(x)dx

)1/p

< ∞.

We shall need the following two–weight criterion for the Hardy operator

Hf(x) =
∫

|t|<|x|
f(t)dt, x ∈ R,

(see [4, 24, 33], [30, Ch. 1]).

Theorem C. Let 1 < p ≤ q < ∞. Then H is bounded from Lp
u(R) to Lq

σ(R) if
and only if

A4 ≡ sup
t>0

( ∫

|x|>t

σ(x)dx

)1/q( ∫

|x|<t

u1−p′(x)dx

)1/p′

< ∞.

Moreover, there exist positive constants c1 and c2 depending only on p and
q such that c1A4 ≤ ‖H‖ ≤ c2A4.

The next statement concerning the truncated Riesz potential

Jαf(x) =
∫

|y|<2|x|

f(y)
|x− y|n−α

dy, x ∈ Rn,

is due to [39] for p = q (for the simple proof in the case 1 < p ≤ q < ∞ see [10,
Section 5.1]).

Theorem D. Let 1 < p ≤ q < ∞. Suppose that α > n/p. Then the operator
Jα is bounded from Lp(Rn) to Lq

v(Rn) if and only if

A5 ≡ sup
t>0

( ∫

|x|>t

v(x)
|x|(n−α)p

dx

)1/q

tn/p′ < ∞.

Moreover, there exist positive constants c1 and c2 depending only on p and q
such that

c1A5 ≤ ‖Jα‖ ≤ c2A5.

Let D be the set of all dyadic intervals in R. By dyadic interval we mean
an interval of the form [2kn, 2k(n + 1)), where k and n are integers. The main
property of the dyadic intervals is that if |I ′| ≤ |I|, then I ′ ⊂ I or I ′ ∩ I = ∅.
Let us denote Λk = 2−kZ for k ∈ Z. Suppose that D(k) is the collection of the
intervals determined by Λk. It is clear that D = ∪k∈ZD(k). Each I ∈ D(k) is
the union of 2 non-overlapping intervals belonging to D(k+1) (for details and
some properties of the dyadic intervals see, for instance, [16, p. 136]).
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Definition 1.1. We say that the weight function ρ satisfies the dyadic reverse
doubling condition (ρ ∈ RD(d)(R)) if there exists a constant d > 1 such that

dρ(I ′) ≤ ρ(I)

for all I ′, I ∈ D, where I ′ ⊂ I and |I| = 2|I ′|.
It is obvious that the constant d in Definition 1.1 is equal to 2 when ρ ≡

1. It is also easy to see that if a measure µ satisfies the doubling condition
µ([x − 2r, x + 2r]) ≤ bµ([x − r, x + r]) (i.e., µ ∈ DC(R)), where the constant
b is independent of x ∈ R and r > 0, then µ ∈ DC(d)(R), i.e., µ(I) ≤ b1µ(I ′),
where I, I ′ ∈ D, I ′ ⊂ I and |I ′|= |I|/2. Consequently (see, e.g., [43, p. 21]) if
µ ∈ DC(R), then µ ∈ RD(d)(R).

We shall also need the next Carleson-Hörmander ([5, 20]) type embedding
theorem regarding dyadic intervals (see [41, 44]).

Theorem E. Let 1 < p < q < ∞ and let ρ be a weight function on R such
that ρ1−p′ satisfies the dyadic reverse doubling condition. Let {cI} be non-
negative numbers corresponding to dyadic intervals I in R. Then the following
two statements are equivalent:

(i) There is a positive constant C such that

∑

I∈D
cI

(
1
|I|

∫

I

g(x)dx

)q

≤ C

(∫

R
g(x)pρ(x)dx

)q/p

for all non-negative g ∈ Lp
ρ(R);

(ii) There is a positive constant C1 such that

cI ≤ C1|I|q
(∫

I

ρ(x)1−p′dx

)−q/p′

for all I ∈ D.

This result yields the following corollary.

Corollary A. Let 1 < p < q < ∞ and let ρ be a weight function on R such
that ρ1−p′ satisfies the dyadic reverse doubling condition. Then the Carleson-
Hörmander inequality

∑

I∈D

( ∫

I

ρ1−p′(x)dx

)−q/p′( ∫

I

f(x)dx

)q

≤ c

( ∫

R
fp(x)ρ(x)dx

)q/p

holds for all non-negative f ∈ Lp
ρ(R).

2. Main results

Here we formulate the main results of this paper. Let us begin with the
operator MαIβ .
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Theorem 2.1. Let 1 < p < q < ∞ and let 0 < α, β < 1. Suppose that
w(x, y) = w1(x)w2(y) with w1−p′

1 ∈ RD(d)(R). Then MαIβ is bounded from
Lp

w(R2) to Lq
v(R2) if and only if

B1 := sup
a∈R;r>0;I⊂R

|I|α−1

( ∫

I

∫

|y−a|<r

w1−p′(x, y)dxdy

)1/p′

×
( ∫

I

∫

|y−a|>r

v(x, y)
|y − a|(1−β)q

dxdy

)1/q

< ∞;

B2 := sup
a∈R;r>0;I⊂R

|I|α−1

( ∫

I

∫

|y−a|>r

w1−p′(x, y)|y − a|(β−1)p′dxdy

)1/p′

×
( ∫

I

∫

|y−a|<r

v(x, y)dxdy

)1/q

< ∞,

where I is arbitrary bounded interval in R.

Notice that B1 is a dual of B2.
For the strong fractional maximal operator we have:

Theorem 2.2. Let 1 < p < q < ∞ and let 0 < α, β < 1. Suppose that
w(x, y) = w1(x)w2(y) with w1−p′

1 , w1−p′
2 ∈ RD(d)(R). Then Mα,β is bounded

from Lp
w(R2) to Lq

v(R2) if and only if

B3 := sup
I,J

|I|α−1|J |β−1

( ∫

I

∫

J

v(x, y)dxdy

)1/q( ∫

I

∫

J

w1−p′(x, y)dxdy

)1/p′

< ∞,

where the supremum are taken over all arbitrary bounded intervals I and J in
R.

To formulate the next result we need:

Definition 2.3. We say that the weight ρ on R satisfies A∞(R) condition
(ρ ∈ A∞(R)) if there exist constants c, δ > 0 such that for all intervals I and
measurable sets E ⊂ I the inequality

ρ(E)
ρ(I)

≤ c

( |E|
|I|

)δ

holds, where ρ(E) =
∫

E
ρ. Further, we say that a two-dimensional weight u

belongs to the class A∞(R) with respect to the first variable uniformly to the
second one (u ∈ A

(x)
∞ (R)) if the inequality

uy(E)
uy(I)

≤ c

( |E|
|I|

)δ

holds for all y ∈ R, all intervals I ⊂ R and measurable sets E ⊂ I, where
uy(E) =

∫
E

u(x, y)dx. The class A
(y)
∞ (R) is defined analogously.
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It is known (see [7, 21], [16, Ch. IV]) that ρ ∈ A∞(R) if and only if ρ belongs
to the Muckenhoupt Ap(R) class for some p ≥ 1. It should be mentioned that
some essential properties of the Muckenhoupt Ap classes defined on rectangles
has been studied in [11, 23] (see also [8], [16, Ch. IV]).

Our result concerning the Riesz potential with product kernels is:

Theorem 2.4. Let 1 < p < q < ∞ and let 0 < α, β < 1. Suppose that
w(x, y) = w1(x)w2(y) with w1−p′

1 ∈ RD(d)(R) and v ∈ A
(x)
∞ (R) uniformly to

the second variable. Then Iα,β is bounded from Lp
w(R2) to Lq

v(R2) if and only
if max{B1, B2} < ∞.

Remark 2.5. Criteria for the boundedness of Iα,β from Lp
w(R2) to Lp

v(R2) pro-
vided that the weights v and w1−p raised to a certain power satisfy A∞ con-
dition uniformly with respect to the second variable have been announced in
[29].

From Theorems 2.1 and 2.2 we have:

Corollary 2.6. Let 1 < p < q < ∞ and let 0 < α, β < 1/p. Then the following
statements are equivalent:

(i) MαIβ is bounded from Lp(R2) to Lq
v(R2);

(ii) Mα,β is bounded from Lp(R2) to Lq
v(R2);

(iii)

B4 := sup
I,J

( ∫

I

∫

J

v(x, y)dxdy

)
|I|q(α−1/p)|J |q(β−1/p) < ∞,

where I and J are arbitrary bounded intervals in R.

Notice that in Corollary 2.6 there is no any additional condition on v except
(iii).

Theorem 2.4 yields:

Corollary 2.7. Let 1 < p < q < ∞, 0 < α, β < 1/p. Suppose that the two-
dimensional weight v(x, y) belongs to A

(x)
∞ (R) uniformly to y, or v ∈ A

(y)
∞ (R)

uniformly to x. Then the following statements are equivalent:
(i) Iα,β is bounded from Lp(R2) to Lq

v(R2);
(ii) B4 < ∞.

For the operator IαJβ we have:

Theorem 2.8. Let 1 < p < q < ∞. Suppose that 0 < α < 1 and β > 1/p.
Then the two–weight inequality

(∫∫

R2
|(IαJβf)(x, y)|qv(x, y)dxdy

)1/q

≤ c

(∫∫

R2
|f(x, y)|pu(x)dxdy

)1/p

holds if and only if

B5 ≡ sup
a∈R;r>0;k∈Z

( ∫

|x−a|>r

∫

2k<|y|<2k+1

v(x, y)
|x− a|(1−α)q

dxdy

)1/q

(i)
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×
( ∫

|x−a|<r

u1−p′(x)dx

)1/p′

2k(β−1/p) < ∞;

B6 ≡ sup
a∈R;r>0;k∈Z

( ∫

|x−a|<r

∫

2k<|y|<2k+1
v(x, y)dxdy

)1/q

(ii)

×
( ∫

|x−a|>r

u1−p′(x)
|x− a|(α−1)p′ dx

)1/p′

2k(β−1/p) < ∞.

Corollary 2.9. Let 1 < p < q < ∞. Suppose that 0 < α < 1 and β > 1/p.
Then the operator IαJβ is bounded from Lp(R2) to Lq

v(R2) if and only if

sup
a∈R;r>0;k∈Z

( ∫ a+r

a−r

∫

2k<|y|<2k+1
v(x, y)dxdy

)1/q

rα−1/p2k(β−1/p) < ∞.

In the diagonal case p = q we have:

Theorem 2.10. Let 1 < p < ∞. Suppose that 0 < α < 1/p < β. Then the
operator IαJβ is bounded from Lp(R2) to Lp

v(R2) if and only if IαVj ∈ Lp′

loc(R)
for all j ∈ Z and there exists a positive constant c such that for almost all
x ∈ R and all j ∈ Z the inequality

Iα[IαVj ]p
′
(x) ≤ cIα[Vj ](x)

holds, where Iα is the one-dimensional potential and

Vj(x) ≡
∫

2j<|y|<2j+1
v(x, y)|y|βp−1dy.

We have also the Fefferman-Stein type dual inequality for the operators
Mα,β , MαIβ and Iα,β . Notice that this inequality for the classical Riesz poten-
tials Iα in the case p = q was established by E. Sawyer (see, e.g., [2]).

Theorem 2.11. Let 1 < p < q < ∞. Suppose that 1/p − 1/q < α, β < 1/p.
Then there exists a positive constant c such that
( ∫∫

R2
(Mα,βf)q(x, y)v(x, y)dxdy

)1/q

≤ c

( ∫∫

R2
|f(x, y)|p(M̃α,βv)p/q(x, y)dxdy

)1/p

,

where

(M̃α,βv)(x, y) := sup
I3x;J3y

|I|(α−1/p)q|J |(β−1/p)q

∫

I

∫

J

v(t, τ)dtdτ

and the positive constant does not depend on f and v.

Theorem 2.12. Let 1 < p < q < ∞ and let 1/p− 1/q < α, β < 1/p. Suppose
that v ∈ A

(y)
∞ uniformly to x. Then the following inequality holds:

( ∫∫

R2
(MαIβf)q(x, y)v(x, y)dxdy

)1/q

≤ c

( ∫∫

R2
|f(x, y)|p(M̃α,βv)p/q(x, y)dxdy

)1/p

with a positive constant c independent of f .
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For Iα,β we have:

Theorem 2.13. Let 1 < p < q < ∞ and let 1/p− 1/q < α, β < 1/p. Suppose
that v ∈ A

(x)
∞ (R) ∩A

(y)
∞ (R). Then the following inequality

( ∫∫

R2
|(Iα,βf)(x, y)|qv(x, y)dxdy

)1/q

≤ c

( ∫∫

R2
|f(x, y)|p(M̃α,βv)p/q(x, y)dxdy

)1/p

holds, where the positive constant c does not depend on f .

3. Proofs of the main results

To prove the main statements of the paper we shall need the following lemma.

Lemma 3.1. Let 0 < α < 1, 0 < β < 1. Suppose that k ∈ Z and f ≥ 0. Then
the following inequalities hold:

(3.1) (M (2k)
α Iβ)f(x, y) ≤ cα

|R(0, 2k+2)|
∫

R(0,2k+2)

Kt(x, y)dt;

(3.2) M
(2k)
α,β f(x, y) ≤ cα,β

|R(0, 2k+2)|2
∫

R(0,2k+2)

∫

R(0,2k+2)

St,τ (x, y)dtdτ,

where

(M (2k)
α Iβ)f(x, y) := sup

I3x;|I|≤2k

1
|I|1−α

∫

I

∫

R
|y − τ |β−1f(t, τ)dtdτ ;

M
(2k)
α,β f(x, y) := sup

I×J3(x,y);|I|,|J|≤2k

1
|I|1−α|J |1−β

∫

I

∫

J

f(t, τ)dtdτ ;

R(0, r) = {t : −r ≤ t ≤ r}, r > 0;

Kt(x, y) := sup
I−t3x;I∈D

1
|I|1−α

∫

I−t

[Iβf(s, ·)](y)ds,

I − t := {x− t : x ∈ I};

St,τ (x, y) := sup
I−t3x;I∈D

sup
J−τ3y;J∈D

1
|I|1−α

1
|J |1−β

∫

I−t

∫

J−τ

f(s, ε)dsdε.

We notice that such type estimate first has been established in [12] for the
classical Hardy-Littlewood maximal functions (see also [16, p. 431]. For frac-
tional maximal functions see [36, 37]).

Proof of Lemma 3.1. We shall need the following observation (see, e.g., [16,
p. 431]). Let j and I be an integer and an interval respectively such that
2j−1 < |I| ≤ 2j . Suppose that k ∈ Z, j ≤ k. Let E be the set of those
t ∈ R(0, 2k+2) for which there is some I1 ∈ D − t with |I1| = 2j+1 and such
that I ⊂ I1. Then

(3.3) |E| ≥ 2k+2,

where D − t := {I − t : I ∈ D}.
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To prove (3.1) we take f and (x, y) ∈ R2. Then there exists an interval I
(|I| ≤ 2k) such that x ∈ I and

2
|I|1−α

∫

I

(Iβf(s, ·))(y)ds ≥ (M (2k)
α Iβ)f(x, y).

Let j be an integer such that 2j−1 < |I| ≤ 2j . In this case j ≤ k. Let E be the
set defined above. Further, for every t ∈ E there exists an interval Q ∈ D − t
such that |Q| = 2j+1, I ⊂ Q and

1
2
(M (2k)

α Iβ)f(x, y) ≤ 1
|I|1−α

∫

I

(Iβf(s, ·))(y)ds

≤ c

|Q|1−α

∫

Q

(Iβf(s, ·))(y)ds ≤ cKt(x, y).

By (3.3) we also have that |E| ≥ |R(0, 2k+2)|/2. Hence

(M (2k)
α Iβ)f(x, y) ≤ c

|E|
∫

E

Kt(x, y)dt ≤ c

|R(0, 2k+2)|
∫

R(0,2k+2)

Kt(x, y)dt.

To prove (3.2) we argue as above. For given f and (x, y) ∈ R2 we take
intervals R1 3 x and R2 3 y, |R1|, |R2| ≤ 2k, such that

2
|R1|1−α|R2|1−β

∫

R1

∫

R2

f(s, ε)dsdε > M
(2k)
α,β f(x, y).

Now, let us take integers j and i so that 2j−1 < |R1| ≤ 2j and 2i−1 < |R2| ≤ 2i.
It is obvious that j, i ≤ k. Further, let us define the sets E1 and E2 by the
following way:

E1 := {t ∈ R(0, 2k+2) : ∃I ∈ D − t, |I| = 2j+1, R1 ⊂ I};
E2 := {τ ∈ R(0, 2k+2) : ∃J ∈ D − τ, |J | = 2i+1, R2 ⊂ J}.

Then for all t ∈ E1 and τ ∈ E2 we have
1
2
M

(2k)
α,β f(x, y) ≤ 1

|R1|1−α|R2|1−β

∫

R1

∫

R2

f(s, ε)(y)dsdε ≤ cSt,τ (x, y).

By (3.3) we have that |E1|, |E2| ≥ |R(0, 2k+2)|/2. Hence

M
(2k)
α,β f(x, y) ≤ c

|E1 × E2|
∫

E1×E2

St,τ (x, y)dtdτ

≤ c

|R(0, 2k+2)|2
∫

R(0,2k+2)

∫

R(0,2k+2)

St,τ (x, y)dtdτ.

The lemma has been proved. ¤

Proof of Theorem 2.1. Sufficiency. First let us show sufficiency for the dyadic
version of the operator MαIβ :

NαIβf(x, y) = sup
I3x;I∈D

|I|α−1

∫

I

|Iβ(f(t, ·))(y)|dt.
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Let f ≥ 0. Without loss of generality we can assume that f is bounded and
has a compact support. Therefore NαIβ is finite for all (x, y) ∈ R2. We claim
that if we prove the theorem for such functions, then by elementary discussion
we can pass to arbitrary f ∈ Lp

w(R2). Indeed, let f ∈ Lp
w(R2) and let us

take the sequence fn = fχB(0,n)χ{f<n}. Then fn → f in Lp
w(R2) and also

pointwisely. Moreover, fn(x, y) ≤ f(x, y). On the other hand, (MαIβ)fn is a
Cauchy sequence, because

‖(MαIβ)fn−(MαIβ)fm‖Lq
v(R2) ≤ ‖(MαIβ)(fn−fm)‖Lq

v(R2) ≤ c‖fn−fm‖Lp
w(R2).

Consequently, by the completeness of the space Lq
v(R2) there exists g ∈ Lq

v(R2)
such that

‖(MαIβ)fn − g‖Lq
v(R2) → 0.

Hence, there exists a subsequence (MαIβ)fnk
which converges in norm and

almost everywhere to g. But fnk
converges to f in Lp

w and also a.e.. This leads
to the inequality

(3.4) ‖g‖Lq
v(R2) ≤ c‖f‖Lp

w(R2),

where c does not depend on f .
Now we will argue for the subsequence fnk

:
For all (x, y) ∈ R2 with x ∈ I we have (fnk

is non-decreasing)

|I|α−1

∫

I

∫

R

f(t, τ)
|y − τ |1−β

dtdτ = lim
k→∞

|I|α−1

∫

I

∫

R

fnk
(t, τ)

|y − τ |1−β
dtdτ

≤ lim
k→∞

sup
I,I3x

|I|α−1

∫

I

∫

R

fnk
(t, τ)

|y − τ |1−β
dtdτ

= lim
k→∞

(MαIβ)fnk
(x, y)

and the last limit exists, because it converges a.e. to g. Hence

(MαIβ)f(x, y) ≤ lim
k→∞

(MαIβ)fnk
(x, y) = g(x, y)

for almost all (x, y). Finally, by (3.4) we have

‖(MαIβ)f‖Lq
v(R2) ≤ c‖f‖Lp

w(R2).

Further, for (x, y) ∈ R2 there exists dyadic interval Iy(x) ⊂ R containing x
such that

(3.5)
2

|Iy(x)|1−α

∫

Iy(x)

Iβ(f(t, ·))(y)dt ≥ NαIβf(x, y).

Let

FI = {(x, y) ∈ R2 : x ∈ I and I is minimal for which (3.5) holds}.
Let Dm be a subset of D for which FI 6= ∅. By the main property of dyadic
intervals it is clear that FI ∩ FJ = ∅ when I 6= J . Notice also that from the
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inequality

(NαIβ)f(x, y) ≤ 2
|Iy(x)|1−α

∫

Iy(x)

Iβf(t, ·)(y)dt ≤ c|Iy(x)|α,

with the constant c depending on L∞ norm and the support of f , it follows the
existence of minimal dyadic interval containing x for which (3.5) holds.

From the definition of maximal operator and the latter inequality it is ob-
vious that R2 = ∪I∈Dm

FI . It is also clear that FI ⊂ I × R and that FI is a
measurable set for every I. Let us use the notation:

VI(y) := |I|(α−1)q

∫

I

v(x, y)dx; F̄I(τ) :=
∫

I

f(t, τ)dt.

We have
∫

R

∫

R
[(NαIβ)f(x, y)]qv(x, y)dxdy

≤ 2q
∑

I∈Dm

∫ ∫

FI

[
1

|I|1−α

∫

I

Iβ(f(t, ·))(y)dt

]q

v(x, y)dxdy

≤ 2q
∑

I∈Dm

∫

R
VI(y)

[ ∫

I

( ∫

R
|y − τ |β−1f(t, τ)dτ

)
dt

]q

dy

(change the order of integration in the inner integral)

= 2q
∑

I∈Dm

∫

R
VI(y)

[ ∫

R
|y − τ |β−1F̄I(τ)dτ

]q

dy

(by Theorem A and the fact that in the case n = 1 the first integrals in A1

and A2 of Theorem A can be taken over intervals (x− r, x + r), see [14])

≤ c(max{B1, B2})q
∑

I∈Dm

[ ∫

R

( ∫

I

w1−p′
1 (t)dt

)1−p

(F̄I(y))pw2(y)dy

]q/p

= c
∑

I∈Dm

( ∫

I

w1−p′
1 (t)dt

)−q/p′[ ∫

R
(F̄I(y))pw2(y)dy

]q/p

(due to Minkowski’s integral inequality and Corollary A)

≤
∑

I∈Dm

( ∫

I

w1−p′
1 (t)dt

)−q/p′[ ∫

I

( ∫

R
fp(t, y)w2(y)dy

)1/p

dt

]q

≤ c‖f‖q
Lp

w(R2)
.

Hence NαIβ is bounded from Lp
w(R2) to Lq

v(R2).
Let us now pass to the operator MαIβ . Assume that k ∈ Z. Due to

Lemma 3.1 we have

Dt :=
∫∫

R2
(Kt(x, y))qv(x, y)dxdy
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=
∫∫

R2

(
sup

x∈I;I∈D

1
|I|1−α

∫

I

∫

R
|y − ε|β−1f(s− t, ε)dεds

)q

v(x− t, y)dxdy

(by the condition max{B1, B2} < ∞ and the fact that this condition

is translation invariant)

≤ c (max{B1, B2})q

( ∫∫

R2
(f(x− t, y))pw(x− t, y)dxdy

)q/p

= c

( ∫∫

R2
(f(x, y))pw(x, y)dxdy

)q/p

.

Consequently,

(Dt)1/q ≤ c

( ∫∫

R2
(f(x, y))pw(x, y)dxdy

)1/p

,

where the constant c does not depend on t.
Applying Lemma 3.1, Minkowski’s inequality and the latter inequality we

find that
( ∫∫

R2
[(M (2k)

α Iβ)f(x, y)]qv(x, y)dxdy

)1/q

≤ c

( ∫∫

R2

(
1

|R(0, 2k+2)|
∫

R(0,2k+2)

Kt(x, y)dt

)q

v(x, y)dxdy

)1/q

≤ c |R(0, 2k+2)|−1

∫

R(0,2k+2)

( ∫∫

R2
Kq

t (x, y)v(x, y)dxdy

)1/q

dt

= c |R(0, 2k+2)|−1

∫∫

R(0,2k+2)

(Dt)1/qdt ≤ c

( ∫

R2
(f(x, y))pw(x, y)dxdy

)1/p

.

Passing now k to the infinity we finally obtain sufficiency.
To prove necessity we take the functions

f(x, y) = χI(x)χ{y:|y−a|>r}(y)w1−p′(x, y)|a− y|(p′−1)(β−1),

where a ∈ R and I is an interval in R. Then we have
∫∫

R2
v(x, y)[(MαIβ)f(x, y)]qdxdy

≥
∫

I

∫

|y−a|<r

v(x, y)|I|(α−1)q

( ∫

I

∫

|τ−a|>r

f(t, τ)
|y − τ |1−β

dtdτ

)q

dxdy

( if |y − a| < r and |τ − a| > r, then |τ − y| ≤ 2|τ − a| )

≥ c

( ∫

I

∫

|y−a|<r

v(x, y)dxdy

)
|I|(α−1)q

( ∫

I

∫

|τ−a|>r

w1−p′(t, τ)
|τ − a|(1−β)p′ dtdτ

)q

.
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On the other hand,

‖f‖q
Lp

w(R2)
=

( ∫

I

∫

|y−a|>r

w1−p′(x, y)|y − a|(β−1)p′dxdy

)q/p

.

From the two–weight inequality we will derive the condition B2 < ∞. To prove
B1 < ∞ we take the functions

f(x, y) = χI(x)χ{y:|y−a|<r}(y)w1−p′(x, y)

and argue as above. Theorem 2.1 has been proved. ¤

Proof of Theorem 2.2. First we prove the theorem for the operator

Nα,βf(x, y) := sup
I×J3(x,y);I,J∈D

|I|α−1|J |β−1

∫

I

∫

J

|f(t, τ)|dtdτ.

We can assume that f is a non-negative bounded function with compact
support. In this case Nα,βf(x, y) < ∞ for all (x, y) ∈ R2.

For every (x, y) ∈ R2 let us take the pair of dyadic intervals {I(x), J(y)},
x ∈ I(x), y ∈ J(y) such that

(3.6)
2

|I(x)|1−α|J(y)|1−β

∫

I(x)

∫

J(y)

f(t, τ)dtdτ ≥ Nα,βf(x, y).

Let us introduce the set

FI,J = {(x, y) ∈ R2 : x ∈ I, y ∈ J and (3.6) holds for I and J}
for each (I, J), I, J ∈ D. In this case for a fixed point (x, y) the minimal dyadic
rectangle I × J satisfying (3.6) (i.e., for any proper dyadic rectangle I1 × J1,
I1 ⊂ I, J1 ⊂ J (3.6) fails) exists but the latter is not unique. For our reasons
it is enough that (3.6) holds on every (x, y) ∈ FI,J ; R2 = ∪I,J∈DFI,J and
FI,J ⊂ I × J .

In the sequel we will use the notation:

V̄I,J := |I|(α−1)q|J |(β−1)q

∫

I

∫

J

v(x, y)dxdy; F̄I,J :=
∫

I

∫

J

f(t, τ)dtdτ.

We have∫∫

R2
[Nα,βf(x, y)]qv(x, y)dxdy

≤ 2q
∑

I,J∈D
V̄I,J F̄ p

I,J (by the condition B3 < ∞)

≤ 2qBq
3

∑

I,J∈D

( ∫

I

w1−p′
1 (t)dt

)−q/p′( ∫

J

w1−p′
2 (t)dt

)−q/p′( ∫

I

∫

J

f(t, τ)dtdτ

)q

= c
∑

J∈D

( ∫

J

w1−p′
2 (t)dt

)−q/p′∑

I∈D

( ∫

I

w1−p′
1 (t)dt

)−q/p′[ ∫

I

( ∫

J

f(t, τ)dτ

)
dt

]q

(due to Corollary A with respect to the intervals I)
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≤ c
∑

J∈D

( ∫

J

w1−p′
2 (t)dt

)q/p( ∫

R
w1(t)

( ∫

J

f(t, τ)dτ

)p

dt

)q/p

(by generalized Minkowski’s inequality and Corollary A)

≤ c
∑

J∈D

( ∫

J

w1−p′
2 (t)dt

)q/p( ∫

J

( ∫

R
fp(t, τ)w1(t)dt

)1/p

dτ

)q

≤ c‖f‖q
Lp

w(R2)
.

Arguing in the same manner as in the proof of Theorem 2.1, using (3.2) and
the fact that the condition B3 < ∞ is translation invariant, we can derive
sufficiency of the theorem.

To show necessity we observe that

‖Mα,βf‖Lq
v(R2) ≥ |I|α−1|J |β−1

( ∫

I

∫

J

v(x, y)dxdy

)1/q( ∫

I

∫

J

f(t, τ)dtdτ

)

for any pair of intervals (I, J). It remains now to use the two-weight inequality
for the functions

f(x, y) = χI(x)χJ(y)w1−p′(x, y). ¤

The next statement is well-known ([34]).

Proposition 3.2. Let 1 < q < ∞. Suppose that 0 < α < 1 and ρ ∈ A∞(R).
Then there exists a positive constant c depending only on α, p and w such that
the inequality

‖Iαf‖Lq
ρ(R) ≤ c‖Mαf‖Lq

ρ(R)

holds.

Applying Proposition 3.2 to one of the variables uniformly with respect to
the second one we easily derive Theorem 2.4.

Proof of Corollary 2.6. To prove the implication (iii) ⇒ (i) observe that the
condition B4 < ∞ implies max{B1, B2} < ∞ for w ≡ 1. Indeed, we have

B2 := c sup
a∈R;r>0;I⊂R

|I|α−1/prβ−1/p

( ∫

I

∫

|y−a|<r

v(x, y)dxdy

)1/q

= cB
1/q
4 ,

while

B1 := c sup
a∈R;r>0;I⊂R

|I|α−1/pr1/p′
( ∫

I

∫

|y−a|>r

v(x, y)
|y − a|(1−β)q

dxdy

)1/q

.

Further,

|I|(α−1/p)qrq/p′
∫

I

∫

|y−a|>r

v(x, y)
|y − a|(1−β)q

dxdy

= |I|(α−1/p)qrq/p′
∞∑

k=0

∫

I

∫

2kr<|y−a|<2k+1r

v(x, y)
|y − a|(1−β)q

dxdy
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≤ |I|(α−1/p)qrq/p′
∞∑

k=0

(2kr)(β−1)q

∫

I

∫

2kr<|y−a|<2k+1r

v(x, y)dxdy

≤ cB4r
q/p′

∞∑

k=0

(2kr)−q/p′ = cB4

∞∑

k=0

2−kq/p′ = cB4.

Hence, B2 ≤ cB
1/q
4 and consequently, max{B1, B2} ≤ cB

1/q
4 when w ≡ 1.

Now it remains to apply Theorem 2.1. It is easy to see that the implication
(ii) ⇒ (iii) follows from the boundedness of the operator Mα,β on the class of
functions

fI,J (x, y) = χI(x)χJ(y).
Due to the inequality Mα,βf(x, y) ≤ MαIβf(x, y) (f ≥ 0) we find that (i) ⇒
(ii). Finally we have (iii) ⇒ (i) ⇒ (ii) ⇒ (iii). ¤
Proof of Corollary 2.7. First we prove the implication (ii) ⇒ (i). We have
already shown (see the proof of Corollary 2.6) that max{B1, B2} ≤ cB

1/q
4 .

Further, let v ∈ A
(x)
∞ . Then the results follows directly from Theorem 2.4. Let

now v ∈ A
(y)
∞ . Then taking into account the previous case we have∫∫

R2
v(x, y)(Iα,βf)q(x, y)dxdy=

∫∫

R2
v∗(y, x)(Iβ,αf1)q(y, x)dydx≤c‖f‖q

Lp(R2),

where v∗(y, x) = v(x, y), f1(τ, t) = f(t, τ). It remains to notice that the
condition v ∈ A

(y)
∞ is equivalent to the fact v∗ ∈ A

(x)
∞ . The implication (ii) ⇒ (i)

has been proved.
The fact (i) ⇒ (ii) follows from Corollary 2.6 using the obvious inequality

Mα,βf(x, y) ≤ Iα,βf(x, y), f ≥ 0. ¤
To prove Theorem 2.8 we need the next statement concerning the operator

(IαH)f(x, y) =
∫

R

∫

|τ |<|y|

f(t, τ)
|x− t|1−α

dtdτ.

Proposition 3.3. Let 1 < p < q < ∞, 0 < α < 1. Suppose that w(x, y) =
w1(x)w2(y). Then the operator IαH is bounded from Lp

w(R2) to Lq
v(R2) if and

only if

D1 ≡ sup
a∈R;r>0;s>0

( ∫

|x−a|<r

∫

|y|<s

w1−p′(x, y)dxdy

)1/p′

(i)

×
( ∫

|x−a|>r

∫

|y|>s

v(x, y)
|x− a|(1−α)q

dxdy

)1/q

< ∞;

D2 ≡ sup
a∈R;r>0;s>0

( ∫

|x−a|>r

∫

|y|<s

w1−p′(x, y)
|x− a|(1−α)p′ dxdy

)1/p′

(ii)

×
( ∫

|x−a|<r

∫

|y|>s

v(x, y)dxdy

)1/q

< ∞.
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hold.

This statement in more general form has been formulated in [29].
To prove this proposition we need the following statements (see, e.g., [32]).

Lemma 3.4. Let 1 < p ≤ q < ∞ and let {an}, {bn} be positive sequences.
The inequality

(3.7)
( ∞∑

n=−∞

∣∣∣
n∑

k=−∞
gk

∣∣∣
q

aq
n

)1/q

≤ c
( ∞∑

n=−∞
|gn|pbp

n

)1/p

with the positive constant c independent of {gk} ({gk} ∈ lp
bp

n
(Z)), holds if and

only if

B̄ := sup
n∈Z

( ∞∑

k=n

aq
k

)1/q( n∑

k=−∞
b−p′

k

)1/p′

< ∞.

Moreover, if c is the best constant in (3.7), then

B̄ ≤ c ≤ B̄q
1
q

( q

q − 1

)(p−1)/p

.

Lemma 3.5. Let 1 < p ≤ q < ∞ and let m be an integer. Suppose that
{an}m

n=−∞, {bn}m
n=−∞ are positive sequences. Then the two–weight inequality

(3.8)
( m∑

n=−∞

∣∣∣
n∑

k=−∞
gk

∣∣∣
q

aq
n

)1/q

≤ c
( m∑

n=−∞
|gn|pbp

n

)1/p

for all {gk}m
k=−∞ holds if and only if

B(m) := sup
−∞<n≤m

( m∑

k=n

aq
k

)1/q( n∑

k=−∞
b−p′

k

)1/p′

< ∞.

Moreover, if c is the best constant in (3.8), then

B(m) ≤ c ≤ B(m)q
1
q

( q

q − 1

)(p−1)/p

.

Proof of Proposition 3.3. Sufficiency. First suppose that S :=
∫
R w1−p′

2 (y)dy =
∞.

Let {xk}+∞k=−∞ be a sequence of positive numbers for which the equality

(3.9) 2k =
∫

|y|<xk

w1−p′
2 (y)dy

holds for all k ∈ Z. It is clear that {xk} is increasing and

R \ {0} = ∪k∈ZEk,

where Ek := {y ∈ R : xk ≤ |y| < xk+1}. Besides, it is easy to verify that
2k =

∫
Ek

w1−p′
2 . Let f ≥ 0. We have

I :=
∫

R

∫

R
v(x, y)(IαHf(x, y))qdxdy
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=
∑

k∈Z

∫

R

∫

Ek

v(x, y)
( ∫

R

∫

|τ |<|y|

f(t, τ)
|x− t|1−α

dtdτ

)q

dxdy

≤
∑

k∈Z

∫

R

( ∫

Ek

v(x, y)dy

)(∫

R

( ∫

|τ |<xk+1

f(t, τ)
|x− t|1−α

dτ

)
dt

)q

dx

=
∑

k∈Z

∫

R
v̄k(x)

( ∫

R
|x− t|α−1Fk(t)dt

)q

dx,

where
v̄k(x) :=

∫

Ek

v(x, y)dy; Fk(t) :=
∫

|τ |<xk+1

f(t, τ)dτ.

Further, by Theorem A,

I ≤ c(max{D1, D2})q
∑

j∈Z

[ ∫

R
w1(x)

( ∫

|y|<xj

w1−p′
2 (y)dy

)1−p

(Fk(x))pdx

]q/p

≤ c

[ ∫

R
w1(x)

∑

j∈Z

( ∫

|y|<xj

w1−p′
2 (y)dy

)1−p( j∑

k=−∞

∫

Ek

f(x, τ)dτ

)p

dx

]q/p

.

On the other hand, (3.9) yields
+∞∑

k=n

( ∫

|τ |<xk

w1−p′
2 (τ)dτ

)1−p( n∑

k=−∞

∫

xk<|τ |<xk+1

w1−p′
2 (τ)dτ

)p−1

=
[ +∞∑

k=n

( ∫

|τ |<xk

w1−p′
2 (τ)dτ

)1−p](∫

|τ |<xn+1

w1−p′
2 (y)dy

)p−1

= (
+∞∑

k=n

2k(1−p))2(n+1)(p−1) = c < ∞

for all n ∈ Z. Hence, by Lemma 3.4 and Hölder’s inequality with respect to
the integral

∫
xj<|τ |<xj+1

f(x, τ)dτ we conclude that

I ≤ c

[∫

R
w1(x)

∑

j∈Z

( ∫

xj<|y|<xj+1

w1−p′
2 (y)dy

)1−p( ∫

xj<|τ |<xj+1

f(x, τ)dτ

)p

dx

]q/p

≤ c

[ ∫

R
w1(x)

∑

j∈Z

( ∫

xj<|τ |<xj+1

w2(τ)fp(x, τ)dτ

)
dx

]q/p

= cDq‖f‖q
Lp

w(R2)
.

If S < ∞, then without loss of generality we can assume that S = 1. In
this case we choose the sequence {xk}0k=−∞ for which (3.9) holds for all k ≤ 0.
Arguing as in the case S = ∞ and using Lemma 3.5 instead of Lemma 3.4, we
obtain the desired result. For necessity we put the functions

f(x, y) = χ{x:|x−a|>r}(x)χ{y:|y|>t}(y)w1−p′(x, y)|x− a|(p′−1)(α−1),

f(x, y) = χ{x:|x−a|<r}(x)χ{y:|y|>t}(y)w1−p′(x, y)
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(a ∈ R; r, t > 0) in the two–weight inequality and we are done. ¤

Proof of Theorem 2.8. Let f ≥ 0. Represent IαJβ as follows:

IαJβf(x, y) =
∫

R

∫

|τ |<|y|/2

f(t, τ)
|x− t|1−α|τ − y|1−β

dtdτ

+
∫

R

∫

|y|/2<|τ |<2|y|

f(t, τ)
|x− t|1−α|τ − y|1−β

dtdτ

:= S
(1)
α,βf(x, y) + S

(2)
α,βf(x, y).

We have

‖IαJβf‖q
Lq

v(R2)
≤ c(‖S(1)

α,βf‖q
Lq

v(R2)
+ ‖S(2)

α,βf‖q
Lq

v(R2)
) := c(S(1) + S(2)).

If |τ | < |y|/2, then |y− τ |β−1 ≤ cβ |y|β−1. Therefore, due to Proposition 3.3
we find that

S(1) ≤ c

∫∫

R2
v(x, y)|y|q(β−1)

( ∫

R

∫

|τ |<|y|/2

f(t, τ)
|x− t|1−α

dtdτ

)q

dxdy

≤ c

( ∫∫

R2
(f(x, y))pu(x)dxdy

)q/p

.

Here we have used the inequality

max{B′
5, B

′
6} ≤ c max{B5, B6},

where

B′
5 ≡ sup

a∈R;r>0;s>0
s1/p′

( ∫

|x−a|>r

∫

|y|>s

v(x, y)
|x− a|(1−α)q|y|(1−β)q

dxdy

)1/q

×
( ∫

|x−a|<r

u1−p′(x)dx

)1/p′

;

B′
6 ≡ sup

a∈R;r>0;s>0
s1/p′

( ∫

|x−a|<r

∫

|y|>s

v(x, y)
|y|(1−β)q

dxdy

)1/q

×
( ∫

|x−a|>r

u1−p′(x)
|x− a|(1−α)p′ dx

)1/p′

.

To check the latter inequality we take r > 0 and s > 0. Then s ∈ [2n, 2n+1) for
some n ∈ Z. Hence

sq/p′
( ∫

|x−a|<r

u1−p′(x)dx

)q/p′ ∫

|x−a|>r

∫

|y|>s

v(x, y)
|x− a|(1−α)q|y|(1−β)q

dxdy

≤ c2nq/p′
( ∫

|x−a|<r

u1−p′(x)dx

)q/p′∫

|x−a|>r

∫

|y|>2n

v(x, y)
|x− a|(1−α)q|y|(1−β)q

dxdy
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= c2nq/p′
( ∫

|x−a|<r

u1−p′(x)dx

)q/p′

×
∞∑

k=n

2k(β−1)q

∫

|x−a|>r

∫

2k<|y|<2k+1

v(x, y)
|x− a|(1−α)q

dxdy

≤ cBq
52nq/p′

∞∑

k=n

2−kq/p′ = cBq
5 .

Hence B′
5 ≤ cB5. Analogously it can be proved that B′

6 ≤ cB6.
Further, Hölder’s inequality, Theorem A and simple calculations yield

S(2) ≤
∫∫

R2
v(x, y)

( ∫

R
|x− t|α−1

( ∫

|y|/2<|τ |<2|y|
fp(t, τ)dτ

)1/p

×
( ∫

|y|/2<|τ |<2|y|
|y − τ |(β−1)p′dτ

)1/p′

dt

)q

dxdy

= c
∑

j∈Z

∫

R

∫

2j<|y|<2j+1
v(x, y)|y|q(β−1/p)

×
( ∫

R
|x− t|α−1

( ∫

|y|/2<|τ |<2|y|
fp(t, τ)dτ

)1/p

dt

)q

dx

≤ c
∑

j∈Z

∫

R

( ∫

2j<|y|<2j+1
v(x, y)|y|q(β−1/p)dy

)

×
( ∫

R
|x− t|α−1

( ∫

2j−1<|τ |<2j+2
fp(t, τ)dτ

)1/p

dt

)q

dx

≤ c(max{B5, B6})q
∑

j∈Z

( ∫

R
u(x)

∫

2j−1<|x|<2j+2
fp(x, y)dxdy

)q/p

≤ c

( ∫∫

R2
fp(x, y)u(x)dxdy

)q/p

.

Necessity follows in the same manner as in the proof of Theorem 2.1 has
been obtained. ¤

Theorem 2.10 can be proved easier than the latter statement using the Hardy
inequality (see, e.g., [19]):

(3.10)
∫

R
(Hf(x))p|x|−pdx ≤ c

∫

R
(f(x))pdx.

Indeed, let us first show sufficiency. Keeping the notation from the proof of the
previous theorem, Theorem B and inequality (3.10) we will derive the following
chain of inequalities:

‖S(1)
α,βf‖p

Lp
v(R2)
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≤ c

∫

R

∫

R
v(x, y)|y|(β−1)p

( ∫

R

∫

|τ |<|y|/2

f(t, τ)
|x− t|1−α

dtdτ

)p

dxdy

= c
∑

j∈Z

∫

R

∫

2j<|y|<2j+1
v(x, y)|y|(β−1)p

( ∫

R

∫

|τ |<|y|/2

f(t, τ)
|x− t|1−α

dtdτ

)p

dxdy

≤ c
∑

j∈Z
2j(1−p)

∫

R
Vj(x)

( ∫

R
|x− t|α−1

( ∫

|τ |<2j

f(t, τ)dτ

)
dt

)p

dx

≤
∑

j∈Z
2j(1−p)

∫

R

( ∫

|τ |<2j

f(t, τ)dτ

)p

dt

= c

∫

R

∑

j

2j(1−p)

( ∫

|τ |<2j

f(t, τ)dτ

)p

dt

≤ c

∫

R

( ∑

j

∫

2j<|x|<2j+1
|x|−p

( ∫

|τ |<|x|
f(t, τ)dτ

)p

dx

)
dt

= c

∫

R

( ∫

R
|x|−p

( ∫

|τ |<|x|
f(t, τ)dτ

)p

dx

)
dt ≤ c

∫

R

∫

R
fp(t, τ)dtdτ.

Using again Theorem B we find that

‖S(2)
α,βf‖p

Lp
v(R2)

≤ c

∫

R

∫

R
v(x, y)

( ∫

R
|x− t|α−1

( ∫

|y|/2<|τ |<|y|
fp(t, τ)dτ

)1/p

×
( ∫

|y|/2<|τ |<|y|
|y − τ |(β−1)p′dτ

)1/p′

dt

)p

dxdy

≤ c
∑

j

∫

R
Vj(x)

( ∫

R
|x− t|α−1

( ∫

2j−1<|τ |<2j+1
fp(t, τ)dτ

)1/p

dt

)p

dxdy

≤ c
∑

j

∫

R

∫

2j−1<|τ |<2j+1
fp(t, τ)dtdτ ≤ c‖f‖p

Lp(R2).

Necessity. To prove necessity we observe that the boundedness of the oper-
ator IαJβ from Lp(R2) to Lp

v(R2) implies the inequality
∫

R
Vj(x)

( ∫

R
|x− t|α−1g(t)dt

)p

dx ≤ c‖g‖p
Lp(R)

for all non-negative functions g defined on R and all j ∈ Z. This is possible
if we put the functions of the form fj(x, y) = g(x)χ{y:2j−2<|y|<2j−1}(y) in the
inequality

‖IαJβf‖Lp
v(R2) ≤ c‖f‖Lp(R2).
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Further, by Theorem B we conclude that IαVj ∈ Lp′

loc(R) for all j ∈ Z and

sup
x∈R; j∈Z

(
Iα[IαVj ]p

′
(x)

IαVj(x)

)1/p′

< ∞.
¤

Proof of Theorem 2.11. First we prove the statement for the dyadic strong frac-
tional maximal function Nα,βf(x, y). Suppose that f ≥ 0, f is bounded and
has a compact support. Arguing as in the proof of Theorem 2.2 for given
(x, y) ∈ R2 we take dyadic intervals I(x) and J(y) (x ∈ I(x), y ∈ J(y)) so that
(3.6) holds. Using the notation of the proof of Theorem 2.2 we find that

I :=
∫∫

R2
(Nα,βf)q(x, y)v(x, y)dxdy ≤ 2q

∑

I,J∈D
V̄I,J F̄ q

I,J

= 2q
∑

I,J∈D

( ∫

I

∫

J

f(x, y)
( ∫

I

∫

J

v(t, τ)dtdτ

)1/q

dxdy

)q

|I|(α−1)q|J |(β−1)q

= 2q
∑

I,J∈D

1
(|I||J |)q/p′

( ∫

I

∫

J

f(x, y)
(
|I|q(α−1/p)|J |q(β−1/p)

∫

I

∫

J

v(t, τ)dtdτ

)1/q

dxdy

)q

≤ 2q
∑

I,J∈D
|I|−q/p′ |J |−q/p′

( ∫

I

∫

J

f(x, y)(Ñα,βv)1/q(x, y)dxdy

)q

,

where

Ñα,βv(x, y) = sup
I3x;J3y;I,J∈D

|I|q(α−1/p)|J |q(β−1/p)

∫

I

∫

J

v(t, τ)dtdτ.

Applying Corollary A twice with ρ(x) ≡ 1 and Minkowski’s inequality we
obtain

I ≤ c
∑

I∈D
|I|−q/p′

( ∫

R

( ∫

I

f(x, y)(Ñα,βv)1/q(x, y)dx

)p

dy

)q/p

≤ c
∑

I∈D
|I|−q/p′

( ∫

I

( ∫

R
fp(x, y)(Ñα,βv)p/q(x, y)dy

)1/p

dx

)q

≤ c

( ∫

R

∫

R
fp(x, y)(Ñα,βv)p/q(x, y)dxdy

)q/p

.

Let us now pass to Mα,β . Keeping the notation of Lemma 3.1 we have

Dt,τ :=
∫∫

R2
(St,τ (x, y))qv(x, y)dxdy

=
∫∫

R2

(
sup

I−t3x;J−t3y;I,J∈D
|I|α−1|J |β−1

∫

I−t

∫

J−τ

f(s, ε)dsdε

)q

v(x, y)dxdy

=
∫∫

R2

(
sup

I3x;J3y;I,J∈D
|I|α−1|J |β−1

∫

I

∫

J

f(s− t, ε− τ)dsdε

)q

v(x− t, y − τ)dxdy
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=
∫∫

R2
(Nf(· − t, · − τ))q(x, y)v(x− t, y − τ)dxdy

≤ c

( ∫∫

R2
(f(x− t, y − τ))p(Ñα,βv(· − t, · − τ))p/q(x, y)dxdy

)q/p

= c

( ∫∫

R2
(f(x− t, y − τ))p

(
sup

I3x;J3y;I,J∈D
|I|q(α−1/p)|J |q(β−1/p)

×
∫

I

∫

J

v(s− t, ε− τ)dsdε

)p/q

dxdy

)q/p

= c

( ∫∫

R2
(f(x− t, y − τ))p

(
sup

I3x;J3y;I,J∈D
|I − t|q(α−1/p)|J − τ |q(β−1/p)

×
∫

I−t

∫

J−τ

v(s, ε)dsdε

)p/q

dxdy

)q/p

≤ c

( ∫∫

R2
fp(x, y)(Ñα,βv(· − t, · − τ))p/q(x, y)dxdy

)q/p

≤ c

( ∫∫

R2
(f(x, y))p(M̃α,βv)p/q(x, y)dxdy

)q/p

. ¤
Taking into account the proof of the latter theorem we can formulate the

next statement for the classical fractional maximal function Mγ .

Lemma 3.6. Let 1 < p < q < ∞. Suppose that ρ is an one-dimensional
weight. Assume that 0 < γ < 1/p. Then the inequality

( ∫

R
(Mγf(x))qρ(x)dx

)1/q

≤ c

( ∫

R
|f(x)|p(M̃γρ)p/q(x)dx

)1/p

holds with a positive constant c independent of f and ρ, where

(M̃γρ)p/q(x) = sup
I3x

|I|q(γ−1/p)

∫

I

ρ(x)dx.

Proposition 3.2 and Lemma 3.6 yield:

Corollary 3.7. Let 1 < p < q < ∞ and let ρ ∈ A∞(R). Suppose that 0 < γ <
1/p. Then the inequality

( ∫

R
|Iγf(x)|qρ(x)dx

)1/q

≤ c

( ∫

R
|f(x)|p(M̃γρ)p/q(x)dx

)1/p

holds with a positive constant c independent of f .

Proof of Theorem 2.12. As before we assume that f is non-negative bounded
and has a compact support. Using the notation of the proof of Theorem 2.1
we have

J :=
∫

R

∫

R
(NαIβf)q(x, y)v(x, y)dxdy
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≤ 2q
∑

I∈Dm

∫

R
V̄I(y)

[ ∫

R
|y − τ |β−1F̄I(τ)dτ

]q

dy

= 2q
∑

I∈Dm

|I|(α−1)q

∫

R

( ∫

I

v(x, y)dx

)( ∫

R
F̄I(τ)|y − τ |β−1dτ

)q

dy

(by Corollary 3.7 and the fact
∫

I
v(x, ·)dx ∈ A∞(R) with the constant

independent of I)

≤ c
∑

I∈Dm

|I|(α−1)q

[ ∫

R

( ∫

I

f(t, y)dt

)p[
M̃β

( ∫

I

v(x, ·)dx

)]p/q

(y)dy

]q/p

(generalized Hölder’s inequality)

≤ c
∑

I∈Dm

|I|(α−1)q

( ∫

I

[ ∫

R
fp(t, y)

[
M̃β

( ∫

I

v(x, ·)dx

)]p/q

(y)dy

]1/p

dt

)q

= c
∑

I∈Dm

1
|I|(1−α)q

( ∫

I

[ ∫

R
fp(t, y)

[
sup

J3y;J∈Dm

1
|J |(1/p−β)q

∫

I

∫

J

v(x, τ)dxdτ

]p/q

dy

]1/p

dt

)q

= c
∑

I∈Dm

1
|I|q/p′

( ∫

I

[ ∫

R
fp(t, y)

[
sup

J3y;J∈Dm

1
|I|(1/p−α)q|J |(1/p−β)q

∫

I

∫

J

v(x, τ)dxdτ

] p
q

dy

] 1
p

dt

)q

(by Corollary A with ρ(x) ≡ 1 )

≤ c

( ∫∫

R2
(f(x, y))p(M̃α,βv)p/q(x, y)dxdy

)q/p

.

Arguments similar to that of the proof of the previous theorem completes
the proof. ¤

Proof of Theorem 2.13. We have
∫∫

R2
|Iα,βf(x, y)|qv(x, y)dxdy

≤
∫

R

( ∫

R
v(x, y)

( ∫

R2
|x− t|α−1

( ∫

R

|f(t, τ)|
|y − τ |1−β

dτ

)
dt

)q

dy

)
dx

( by Proposition 3.2 since v ∈ A
(x)
∞ (R) )

≤ c

∫∫

R2
(MαIβf(x, y))qv(x, y)dxdy

(by Theorem 2.12 since v ∈ A
(y)
∞ (R) )

≤ c

( ∫∫

R2
|f(x, y)|p(M̃α,βv)p/q(x, y)dxdy

)q/p

.
¤

Remark 3.8. It is known that (Mγρ)λ, where ρ is a one-dimensional function
and 0 < λ < 1, belongs to the Muckenhoupt’s class A1 (see, e.g., [36]), i.e.,
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there exists a positive constant c such that for all intervals I ⊂ R with finite
length the inequality

1/|I|
∫

I

(Mγρ)λ ≤ c ess inf
I

(Mγρ)λ

holds. Let now 0 < α, β < 1/p.
From the latter fact and the inequalities

(M̃α,βv)(x, y) ≤ sup
I3x

1
|I|q(1/p−α)

∫

I

(
sup
J3y

1
|J |q(1/p−β)

∫

J

v(t, τ)dτ

)
dt

:= (M̃αv1(·, y))(x);

(M̃α,βv)(x, y) ≤ sup
J3y

1
|J |q(1/p−β)

∫

J

(
sup
I3x

1
|I|q(1/p−α)

∫

I

v(t, τ)dt

)
dτ

:= (M̃βv2(x, ·))(y),

where

v1(t, y) := sup
J3y

|J |q(β−1/p)

∫

J

v(t, τ)dτ ; v2(x, τ) := sup
I3x

|I|q(α−1/p)

∫

I

v(t, τ)dt,

it follows that (M̃α,βv)λ(·, y) ∈ A1(R) for every y ∈ R and (M̃α,βv)λ(x, ·) ∈
A1(R) for every x ∈ R.

Remark 3.9. An analysis of proofs of the main results enables us to conclude
that all statements concerning Mα,β , Iα,β and IαJβ hold also for the following
operators defined on Rn × Rm (n,m > 1):

(M (n,m)
α,β f)(x, y) = sup

Bn×Bm3(x,y)

1
|Bn|1−α/n|Bm|1−β/m

∫

Bn

∫

Bm

|f(z, s)|dzds;

(I(n,m)
α,β f)(x, y) =

∫

Rn

∫

Rm

f(z, s)
|x− z|n−α|y − s|m−β

dzds, x ∈ Rn, y ∈ Rm;

(I(n)
α J

(m)
β f)(x, y) =

∫

Rn

∫

{τ∈Rm:|τ |<2|y|}

f(t, τ)
|x− t|n−α|y − τ |m−β

dtdτ,

x ∈ Rn, y ∈ Rm

respectively, where 0 < α < n, 0 < β < m and Bd is a ball in Rd.
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