WEAK AND STRONG CONVERGENCE THEOREMS FOR AN ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTION AND A MIXED EQUILIBRIUM PROBLEM

Yonghong Yao, Haiyun Zhou, and Yeong-Cheng Liou

Abstract

We introduce two iterative algorithms for finding a common element of the set of fixed points of an asymptotically k-strict pseudocontraction and the set of solutions of a mixed equilibrium problem in a Hilbert space. We obtain some weak and strong convergence theorems by using the proposed iterative algorithms. Our results extend and improve the corresponding results of Tada and Takahashi [16] and Kim and Xu $[8,9]$.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $\varphi: C \rightarrow \mathbb{R}$ be a real valued function and $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction, i.e., $\Theta(u, u)=0$ for each $u \in C$. Now we concern the following mixed equilibrium problem (MEP) which is to find $x^{*} \in C$ such that

$$
\begin{equation*}
\Theta\left(x^{*}, y\right)+\varphi(y)-\varphi\left(x^{*}\right) \geq 0, \quad \forall y \in C \tag{MEP}
\end{equation*}
$$

In particular, if $\varphi \equiv 0$, this problem reduces to the equilibrium problem (EP), which is to find $x^{*} \in C$ such that

$$
\begin{equation*}
\Theta\left(x^{*}, y\right) \geq 0, \quad \forall y \in C \tag{EP}
\end{equation*}
$$

Denote the set of solutions of (MEP) by Ω and the set of solutions of (EP) by Γ. The mixed equilibrium problems include fixed point problems, optimization problems, variational inequality problems, Nash equilibrium problems and the equilibrium problems as special cases; see, e.g., $[1,3,4,10,22]$. Some methods have been proposed to solve the equilibrium problems and the mixed equilibrium problems, see, e.g., $[2,5,6,7,10,12,14,15,16,17,18,19,20,21]$.

[^0]On the other hand, recently, Kim and $\mathrm{Xu}[8,9]$ introduced some iterative methods for solving fixed point problems of asymptotically nonexpansive mappings and asymptotically k-strict pseudo-contractions, respectively. The corresponding iterative algorithms are as follows. The first one introduced in [8] is:

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily } \tag{KX1}\\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T^{n} x_{n} \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+\theta_{n}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

where $T: C \rightarrow C$ is an asymptotically nonexpansive mapping and $\theta_{n}=(1-$ $\left.\alpha_{n}\right)\left(k_{n}^{2}-1\right)(\operatorname{diam} \mathrm{C})^{2} \rightarrow 0$ as $n \rightarrow \infty$. And the second one introduced in [9] is:

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily }, \tag{KX2}\\
y_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) T^{n} x_{n}, \\
C_{n}=\left\{z \in C:\left\|y_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}\right. \\
\left.\quad \quad+\left[k-\alpha_{n}\left(1-\alpha_{n}\right)\right]\left\|x_{n}-T^{n} x_{n}\right\|^{2}+\theta_{n}\right\}, \\
\\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0},
\end{array}\right.
$$

where $T: C \rightarrow C$ is an asymptotically k-strict pseudo-contraction and $\theta_{n}=$ $\Delta_{n}^{2}\left(1-\alpha_{n}\right) \gamma_{n} \rightarrow 0(n \rightarrow \infty), \Delta_{n}=\sup \left\{\left\|x_{n}-z\right\|: z \in F(T)\right\}<\infty$. Subsequently, Kim and Xu proved that the iterative algorithm (KX1) and (KX2) are strongly convergent. For more details, see [8, 9]. However, we note that the $(n+1)$ th iterate x_{n+1} is defined as the projection of the initial guess x_{0} onto the intersection of two closed convex subsets C_{n} and Q_{n}. Therefore, an interesting problem is how to construct appropriately C_{n} and Q_{n} such that the computations become easier.

Motivated by the above works, in this paper we introduce two iterative algorithms for finding a common element of the set of fixed points of an asymptotically k-strict pseudo-contraction and the set of solutions of a mixed equilibrium problem in a Hilbert space. We obtain some weak and strong convergence theorems by using the proposed iterative algorithms. Our results extend and improve the corresponding results of Tada and Takahashi [16], Kim and Xu $[8,9]$.

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H. Then, for any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C}(x)$, such that

$$
\left\|x-P_{C}(x)\right\| \leq\|x-y\|
$$

for all $y \in C$. Such a P_{C} is called the metric projection of H onto C. We know that P_{C} is nonexpansive. Further, for $x \in H$ and $x^{*} \in C$,

$$
\begin{equation*}
x^{*}=P_{C}(x) \Leftrightarrow\left\langle x-x^{*}, x^{*}-y\right\rangle \geq 0 \text { for all } y \in C \tag{1}
\end{equation*}
$$

Recall that a mapping $T: C \rightarrow C$ is said to be an asymptotically k-strict pseudo-contraction if, there exists a constant $k \in[0,1)$ satisfying

$$
\begin{equation*}
\left\|T^{n} x-T^{n} y\right\|^{2} \leq\left(1+\gamma_{n}\right)\|x-y\|^{2}+k\left\|\left(I-T^{n}\right) x-\left(I-T^{n}\right) y\right\|^{2} \tag{2}
\end{equation*}
$$

for all $x, y \in C$ and all integers $n \geq 1$, where $\gamma_{n} \geq 0$ for all n and such that $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Note that if $k=0$, then T is an asymptotically nonexpansive mapping, that is, there exists a sequence $\left\{\gamma_{n}\right\}$ of nonnegative numbers with $\gamma_{n} \rightarrow 0$ such that

$$
\left\|T^{n} x-T^{n} y\right\| \leq\left(1+\gamma_{n}\right)\|x-y\|^{2}
$$

for all $x, y \in C$ and all integers $n \geq 1$.
In the sequel, we will use $F(T)$ to denote the set of fixed points of T.
For given sequence $\left\{x_{n}\right\} \subset C$, let $\omega_{w}\left(x_{n}\right)=\left\{x: \exists x_{n_{j}} \rightarrow x\right.$ weakly $\}$ denote the weak ω-limit set of $\left\{x_{n}\right\}$.

In this paper, for solving the mixed equilibrium problems for an equilibrium bifunction $\Theta: C \times C \rightarrow \mathbb{R}$, we assume that Θ satisfies the following conditions:
(H1) Θ is monotone, i.e., $\Theta(x, y)+\Theta(y, x) \leq 0$ for all $x, y \in C$;
(H2) for each fixed $y \in C, x \mapsto \Theta(x, y)$ is concave and upper semicontinuous;
(H3) for each $x \in C, y \mapsto \Theta(x, y)$ is convex.
A mapping $\eta: C \times C \rightarrow H$ is called Lipschitz continuous, if there exists a constant $\lambda>0$ such that

$$
\|\eta(x, y)\| \leq \lambda\|x-y\|, \quad \forall x, y \in C
$$

A differentiable function $K: C \rightarrow \mathbb{R}$ on a convex set C is called:
(i) η-convex if

$$
K(y)-K(x) \geq\left\langle K^{\prime}(x), \eta(y, x)\right\rangle, \quad \forall x, y \in C
$$

where K^{\prime} is the Frechet derivative of K at x;
(ii) η-strongly convex if there exists a constant $\sigma>0$ such that

$$
K(y)-K(x)-\left\langle K^{\prime}(x), \eta(y, x)\right\rangle \geq(\sigma / 2)\|x-y\|^{2}, \quad \forall x, y \in C
$$

Let C be a nonempty closed convex subset of a real Hilbert space $H, \varphi: C \rightarrow$ \mathbb{R} be real-valued function and $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction. Let r be a positive number. For a given point $x \in C$, the auxiliary problem for (MEP) consists of finding $y \in C$ such that

$$
\Theta(y, z)+\varphi(z)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta(z, y)\right\rangle \geq 0, \quad \forall z \in C
$$

Let $S_{r}: C \rightarrow C$ be the mapping such that for each $x \in C, S_{r}(x)$ is the solution set of the auxiliary problem, i.e., $\forall x \in C$,

$$
S_{r}(x)=\left\{y \in C: \Theta(y, z)+\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta(z, y)\right\rangle \geq 0, \forall z \in C\right\}
$$

We need the following important and interesting result for proving our main results.

Lemma 2.1 ([21]). Let C be a nonempty closed convex subset of a real Hilbert space H and let $\varphi: C \rightarrow \mathbb{R}$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction satisfying conditions (H1)-(H3). Assume that
(i) $\eta: C \times C \rightarrow H$ is Lipschitz continuous with constant $\lambda>0$ such that
(a) $\eta(x, y)+\eta(y, x)=0, \quad \forall x, y \in C$,
(b) $\eta(\cdot, \cdot)$ is affine in the first variable,
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
(ii) $K: C \rightarrow \mathbb{R}$ is η-strongly convex with constant $\sigma>0$ and its derivative K^{\prime} is sequentially continuous from the weak topology to the strong topology;
(iii) for each $x \in C$, there exist a bounded subset $D_{x} \subset C$ and $z_{x} \in C$ such that for any $y \in C \backslash D_{x}$,

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0
$$

Then there hold the following:
(I) S_{r} is single-valued;
(II) S_{r} is nonexpansive if K^{\prime} is Lipschitz continuous with constant $\nu>0$ such that $\sigma \geq \lambda \nu$ and

$$
\left\langle K^{\prime}\left(x_{1}\right)-K^{\prime}\left(x_{2}\right), \eta\left(u_{1}, u_{2}\right)\right\rangle \geq\left\langle K^{\prime}\left(u_{1}\right)-K^{\prime}\left(u_{2}\right), \eta\left(u_{1}, u_{2}\right)\right\rangle, \quad \forall\left(x_{1}, x_{2}\right) \in C \times C
$$

$$
\text { where } u_{i}=S_{r}\left(x_{i}\right) \text { for } i=1,2
$$

(III) $F\left(S_{r}\right)=\Omega$;
(IV) Ω is closed and convex.

We also need the following lemmas.
Lemma 2.2. Let H be a real Hilbert space. There hold the following wellknown identities:
(i) $\|x-y\|^{2}=\|x\|^{2}-2\langle x, y\rangle+\|y\|^{2} \quad \forall x, y \in H$.
(ii) $\|t x+(1-t) y\|^{2}=t\|x\|^{2}+(1-t)\|y\|^{2}-t(1-t)\|x-y\|^{2} \quad \forall t \in[0,1], \forall x, y \in$ H.
Lemma 2.3 ([9]). Assume C is a closed convex subset of a real Hilbert space H and let $T: C \rightarrow C$ be an asymptotically k-strict pseudo-contraction. Then the following conclusions hold:
(i) for each $n \geq 1, T^{n}$ satisfies the Lipschitz condition:

$$
\left\|T^{n} x-T^{n} y\right\| \leq L_{n}\|x-y\| \quad \forall x, y \in C
$$

where $L_{n}=\frac{k+\sqrt{1+\gamma_{n}(1-k)}}{1-k}$;
(ii) the mapping $I-T$ is demiclosed at zero, that is, if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightarrow x^{*}$ weakly and $(I-T) x_{n} \rightarrow 0$ strongly, then $(I-T) x^{*}=0$;
(iii) the fixed point set $F(T)$ of T is closed and convex so that the projection $P_{F(T)}$ is well-defined.
Lemma 2.4 ([11]). Let C be a closed convex subset of a real Hilbert space H. Let $\left\{x_{n}\right\}$ be a sequence in H and $u \in H$. Let $q=P_{C} u$. If $\left\{x_{n}\right\}$ is such that $\omega_{w}\left(x_{n}\right) \subset C$ and satisfies the condition

$$
\left\|x_{n}-u\right\| \leq\|u-q\| \text { for all } n
$$

then $x_{n} \rightarrow q$.

3. Main results

In this section, we first introduce the following new iterative algorithm.
Algorithm 3.1. Let C be a nonempty closed convex subset of a real Hilbert space $H, \varphi: C \rightarrow \mathbb{R}$ be a lower semicontinuous and convex real valued function, $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction and $T: C \rightarrow C$ be an asymptotically k-strict pseudo-contraction. Assume that $F(T) \cap \Omega$ is nonempty and bounded. Let r be a positive parameter and $\delta \in(k, 1)$ be a constant. Let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$. Define the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ by the following manner:

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily, } \tag{3}\\
\Theta\left(y_{n}, x\right)+\varphi(x)-\varphi\left(y_{n}\right)+\frac{1}{r}\left\langle K^{\prime}\left(y_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, y_{n}\right)\right\rangle \geq 0, \forall x \in C, \\
z_{n}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left[\delta y_{n}+(1-\delta) T^{n} y_{n}\right] \\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+\theta_{n}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

$$
\text { where } \theta_{n}=\gamma_{n} \Delta_{n}^{2}, \Delta_{n}=\sup \left\{\left\|x_{n}-p\right\|: p \in F(T) \cap \Omega\right\}<\infty
$$

Now we give a strong convergence result concerning iterative Algorithm 3.1 as follows.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\varphi: C \rightarrow \mathbb{R}$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction satisfying conditions $(\mathrm{H} 1)-(\mathrm{H} 3)$ and let $T: C \rightarrow C$ be an asymptotically k-strict pseudo-contraction. Assume that $F(T) \cap \Omega$ is nonempty and bounded. Assume that:
(i) $\eta: C \times C \rightarrow H$ is Lipschitz continuous with constant $\lambda>0$ such that;
(a) $\eta(x, y)+\eta(y, x)=0, \quad \forall x, y \in C$,
(b) $\eta(\cdot, \cdot)$ is affine in the first variable,
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
(ii) $K: C \rightarrow \mathbb{R}$ is η-strongly convex with constant $\sigma>0$ and its derivative K^{\prime} is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with constant $\nu>0$ such that $\sigma \geq \lambda \nu$;
(iii) for each $x \in C$; there exist a bounded subset $D_{x} \subset C$ and $z_{x} \in C$ such that, for any $C \ni y \notin D_{x}$,

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0
$$

(iv) $\alpha_{n} \in[a, 1]$ for some $a \in(0,1)$.

Then the sequence $\left\{x_{n}\right\}$ generated iteratively by (3) converges strongly to $P_{F(T) \cap \Omega} x_{0}$ provided S_{r} is firmly nonexpansive.

Proof. First, we show that the sequence $\left\{x_{n}\right\}$ is well-defined. It is obvious that C_{n} and Q_{n} are closed and convex. Let $p \in F(T) \cap \Omega$. From $y_{n}=S_{r} x_{n}$, we have

$$
\begin{equation*}
\left\|y_{n}-p\right\|=\left\|S_{r} x_{n}-S_{r} p\right\| \leq\left\|x_{n}-p\right\| \tag{4}
\end{equation*}
$$

From Lemma 2.2, (2) and (4), we obtain

$$
\begin{align*}
\left\|z_{n}-p\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\|\delta\left(y_{n}-p\right)+(1-\delta)\left(T^{n} y_{n}-p\right)\right\|^{2} \tag{5}\\
= & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left[\delta\left\|y_{n}-p\right\|^{2}+(1-\delta)\left\|T^{n} y_{n}-p\right\|^{2}\right. \\
& \left.-\delta(1-\delta)\left\|T^{n} y_{n}-y_{n}\right\|^{2}\right] \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\{\delta\left\|y_{n}-p\right\|^{2}+(1-\delta)\left[\left(1+\gamma_{n}\right)\left\|y_{n}-p\right\|^{2}\right.\right. \\
& \left.\left.+k\left\|y_{n}-T^{n} y_{n}\right\|^{2}\right]-\delta(1-\delta)\left\|y_{n}-T^{n} y_{n}\right\|^{2}\right\} \\
= & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\{\left\|y_{n}-p\right\|^{2}+(1-\delta) \gamma_{n}\left\|y_{n}-p\right\|^{2}\right. \\
& \left.+(1-\delta)(k-\delta)\left\|y_{n}-T^{n} y_{n}\right\|^{2}\right\} \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(1+\gamma_{n}\right)\left\|y_{n}-p\right\|^{2} \\
\leq & \left(1+\gamma_{n}\right)\left\|x_{n}-p\right\|^{2} .
\end{align*}
$$

Hence, we have $\left\|z_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}+\theta_{n}$. This implies that $p \in C_{n}$; thus,

$$
\begin{equation*}
F(T) \cap \Omega \subset C_{n} \tag{6}
\end{equation*}
$$

for every $n \geq 0$. Next we show by induction that $F(T) \cap \Omega \subset C_{n} \cap Q_{n}$ for each $n \geq 0$. Since $F(T) \cap \Omega \subset C_{0}$ and $Q_{0}=C$, we get

$$
F(T) \cap \Omega \subset C_{0} \cap Q_{0}
$$

Suppose that $F(T) \cap \Omega \subset C_{k} \cap Q_{k}$ for $k \in \mathbb{N}$. Then, there exists $x_{n+1} \in C_{k} \cap Q_{k}$ such that

$$
x_{n+1}=P_{C_{k} \cap Q_{k}} x_{0} .
$$

Therefore, for each $z \in C_{k} \cap Q_{k}$, we have

$$
\left\langle x_{k+1}-z, x_{0}-x_{k+1}\right\rangle \geq 0
$$

Note that $F(T) \cap \Omega \subset C_{k} \cap Q_{k}$. Hence, for any $z \in F(T) \cap \Omega$ we have

$$
\left\langle x_{k+1}-z, x_{0}-x_{k+1}\right\rangle \geq 0
$$

therefore $z \in Q_{k+1}$. So, we get

$$
F(T) \cap \Omega \subset Q_{k+1}
$$

From this and (6), we have

$$
F(T) \cap \Omega \subset C_{k+1} \cap Q_{k+1}
$$

This denotes that the sequence $\left\{x_{n}\right\}$ is well-defined.
Since $F(T) \cap \Omega$ is a nonempty closed convex subset of C, there exists a unique $z \in F(T) \cap \Omega$ such that $z=P_{F(T) \cap \Omega} x_{0}$. From $x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}$, we have

$$
\left\|x_{n+1}-x_{0}\right\| \leq\left\|z-x_{0}\right\|
$$

for all $z \in C_{n} \cap Q_{n}$. Since $z^{\prime} \in F(T) \cap \Omega \subset C_{n} \cap Q_{n}$, we have

$$
\begin{equation*}
\left\|x_{n+1}-x_{0}\right\| \leq\left\|z^{\prime}-x_{0}\right\| \tag{7}
\end{equation*}
$$

for every $n \geq 0$. Therefore, $\left\{x_{n}\right\}$ is bounded, so are $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$. Since $x_{n}=P_{Q_{n}} x_{0}$ and $x_{n+1} \in Q_{n}$, we get

$$
\left\|x_{n}-x_{0}\right\| \leq\left\|x_{n+1}-x_{0}\right\|
$$

This together with the boundedness of $\left\{\left\|x_{n}-x_{0}\right\|\right\}$ implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|$ exists. The fact that $x_{n+1} \in Q_{n}$ implies that $\left\langle x_{n+1}-x_{n}, x_{n}-x_{0}\right\rangle \geq 0$. Applying Lemma 2.2, we obtain

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\|^{2} & =\left\|\left(x_{n+1}-x_{0}\right)-\left(x_{n}-x_{0}\right)\right\|^{2} \\
& =\left\|x_{n+1}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2}-2\left\langle x_{n+1}-x_{n}, x_{n}-x_{0}\right\rangle \tag{8}\\
& \leq\left\|x_{n+1}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2} \\
& \rightarrow 0 .
\end{align*}
$$

From $x_{n+1} \in C_{n}$, we have

$$
\begin{aligned}
\left\|x_{n}-z_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-z_{n}\right\| \\
& \leq\left(2+\gamma_{n}\right)\left\|x_{n}-x_{n+1}\right\| \\
& \rightarrow 0 .
\end{aligned}
$$

For $p \in F(T) \cap \Omega$, noting that S_{r} is firmly nonexpansive, we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2} & =\left\|S_{r} x_{n}-S_{r} p\right\|^{2} \\
& \left.\leq \| S_{r} x_{n}-S_{r} p, x_{n}-p\right\rangle \\
& =\left\langle y_{n}-p, x_{n}-p\right\rangle \\
& =\frac{1}{2}\left\{\left\|y_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}\right\}
\end{aligned}
$$

and hence,

$$
\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2} .
$$

From (5), we have

$$
\begin{aligned}
\left\|z_{n}-p\right\|^{2} & \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(1+\gamma_{n}\right)\left\|y_{n}-p\right\|^{2} \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(1+\gamma_{n}\right)\left\{\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}\right\} \\
& =\left(1+\alpha_{n} \gamma_{n}\right)\left\|x_{n}-p\right\|^{2}-\alpha_{n}\left(1+\gamma_{n}\right)\left\|x_{n}-y_{n}\right\|^{2},
\end{aligned}
$$

that is,
(9)

$$
\begin{aligned}
\left\|x_{n}-y_{n}\right\|^{2} & \leq \frac{1}{\alpha_{n}\left(1+\gamma_{n}\right)}\left\{\left\|x_{n}-p\right\|^{2}-\left\|z_{n}-p\right\|^{2}\right\}+\frac{\gamma_{n}\left\|x_{n}-p\right\|^{2}}{1+\gamma_{n}} \\
& \leq \frac{1}{\alpha_{n}\left(1+\gamma_{n}\right)}\left\|x_{n}-z_{n}\right\|\left\{\left\|x_{n}-p\right\|+\left\|z_{n}-p\right\|\right\}+\frac{\gamma_{n}\left\|x_{n}-p\right\|^{2}}{1+\gamma_{n}} \\
& \rightarrow 0
\end{aligned}
$$

Combining (8) and (9), we have

$$
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0
$$

By the fact $\alpha_{n}(1-\delta)\left(T^{n} y_{n}-y_{n}\right)=z_{n}-\left(1-\alpha_{n}\right) x_{n}-\alpha_{n} y_{n}$, we get

$$
\left\|\alpha_{n}(1-\delta)\left(T^{n} y_{n}-y_{n}\right)\right\| \leq\left\|z_{n}-x_{n}\right\|+\alpha_{n}\left\|x_{n}-y_{n}\right\| \rightarrow 0
$$

which implies that

$$
\left\|T^{n} y_{n}-y_{n}\right\| \rightarrow 0
$$

Next we show that

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-T y_{n}\right\|=0
$$

As a matter of fact, we have

$$
\begin{aligned}
\left\|y_{n}-T y_{n}\right\| & \leq\left\|y_{n}-T^{n} y_{n}\right\|+\left\|T^{n} y_{n}-T^{n+1} y_{n}\right\|+\left\|T^{n+1} y_{n}-T y_{n}\right\| \\
& \leq\left(1+L_{1}\right)\left\|y_{n}-T^{n} y_{n}\right\|+\left\|T^{n} y_{n}-T^{n+1} y_{n}\right\|
\end{aligned}
$$

Note that

$$
\begin{aligned}
\left\|T^{n} y_{n}-T^{n+1} y_{n}\right\| \leq & \left\|T^{n} y_{n}-y_{n}\right\|+\left\|y_{n}-y_{n+1}\right\|+\left\|y_{n+1}-T^{n+1} y_{n+1}\right\| \\
& +\left\|T^{n+1} y_{n+1}-T^{n+1} y_{n}\right\| \\
\leq & \left\|T^{n} y_{n}-y_{n}\right\|+\left(1+L_{n+1}\right)\left\|y_{n}-y_{n+1}\right\| \\
& +\left\|y_{n+1}-T^{n+1} y_{n+1}\right\|
\end{aligned}
$$

Therefore, we have

$$
\begin{align*}
\left\|y_{n}-T y_{n}\right\| \leq & \left(2+L_{1}\right)\left\|y_{n}-T^{n} y_{n}\right\|+\left(1+L_{n+1}\right)\left\|y_{n}-y_{n+1}\right\| \\
& +\left\|y_{n+1}-T^{n+1} y_{n+1}\right\| \rightarrow 0 \tag{10}
\end{align*}
$$

Since $\left\{y_{n}\right\}$ is bounded, there exists a subsequence $\left\{y_{n_{i}}\right\}$ of $\left\{y_{n}\right\}$ which converges weakly to w. From (7), we also obtain that $T y_{n_{i}} \rightarrow w$ weakly. Next we show that $w \in \Omega$. Since $y_{n}=S_{r} x_{n}$, we derive

$$
\Theta\left(y_{n}, x\right)+\varphi(x)-\varphi\left(y_{n}\right)+\frac{1}{r}\left\langle K^{\prime}\left(y_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, y_{n}\right)\right\rangle \geq 0, \quad \forall x \in C .
$$

From the monotonicity of Θ, we have

$$
\frac{1}{r}\left\langle K^{\prime}\left(y_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, y_{n}\right)\right\rangle+\varphi(x)-\varphi\left(y_{n}\right) \geq-\Theta\left(y_{n}, x\right) \geq \Theta\left(x, y_{n}\right)
$$

and hence

$$
\left\langle\frac{K^{\prime}\left(y_{n_{i}}\right)-K^{\prime}\left(x_{n_{i}}\right)}{r}, \eta\left(x, y_{n_{i}}\right)\right\rangle+\varphi(x)-\varphi\left(y_{n_{i}}\right) \geq \Theta\left(x, y_{n_{i}}\right) .
$$

Since $\frac{K^{\prime}\left(y_{n_{i}}\right)-K^{\prime}\left(x_{n_{i}}\right)}{r} \rightarrow 0$ and $y_{n_{i}} \rightarrow w$ weakly, from the weak lower semicontinuity of φ and $\Theta(x, y)$ in the second variable y, we have

$$
\Theta(x, w)+\varphi(w)-\varphi(x) \leq 0
$$

for all $x \in C$. For $0<t \leq 1$ and $x \in C$, let $x_{t}=t x+(1-t) w$. Since $x \in C$ and $w \in C$, we have $x_{t} \in C$ and hence $\Theta\left(x_{t}, w\right)+\varphi(w)-\varphi\left(x_{t}\right) \leq 0$. From the convexity of equilibrium bifunction $\Theta(x, y)$ in the second variable y, we have

$$
\begin{aligned}
0 & =\Theta\left(x_{t}, x_{t}\right)+\varphi\left(x_{t}\right)-\varphi\left(x_{t}\right) \\
& \leq t \Theta\left(x_{t}, x\right)+(1-t) \Theta\left(x_{t}, w\right)+t \varphi(x)+(1-t) \varphi(w)-\varphi\left(x_{t}\right) \\
& \leq t\left[\Theta\left(x_{t}, x\right)+\varphi(x)-\varphi\left(x_{t}\right)\right]
\end{aligned}
$$

and hence $\Theta\left(x_{t}, x\right)+\varphi(x)-\varphi\left(x_{t}\right) \geq 0$. Then, we have

$$
\Theta(w, x)+\varphi(x)-\varphi(w) \geq 0
$$

for all $x \in C$ and hence $w \in \Omega$.
We shall prove that $w \in F(T)$. As a matter of fact, Lemma 2.3 and (10) guarantee that every weak limit point of $\left\{y_{n}\right\}$ is a fixed point of T. That is, $\omega_{w}\left(y_{n}\right) \subset F(T)$. Hence, $w \in F(T)$.

Therefore, we have

$$
w \in F(T) \cap \Omega
$$

This fact, the inequality (7) and Lemma 2.4 ensure the strong convergence of $\left\{x_{n}\right\}$ to $P_{F(T) \cap \Omega} x_{0}$. This completes the proof.

As a direct consequence of Theorem 3.1, we obtain the following.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\varphi: C \rightarrow \mathbb{R}$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction satisfying conditions (H1)(H3) and let $T: C \rightarrow C$ be an asymptotically nonexpansive mapping such that $F(T) \cap \Omega \neq \emptyset$. Assume that:
(i) $\eta: C \times C \rightarrow H$ is Lipschitz continuous with constant $\lambda>0$ such that;
(a) $\eta(x, y)+\eta(y, x)=0, \quad \forall x, y \in C$,
(b) $\eta(\cdot, \cdot)$ is affine in the first variable,
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
(ii) $K: C \rightarrow \mathbb{R}$ is η-strongly convex with constant $\sigma>0$ and its derivative K^{\prime} is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with constant $\nu>0$ such that $\sigma \geq \lambda \nu$;
(iii) for each $x \in C$; there exist a bounded subset $D_{x} \subset C$ and $z_{x} \in C$ such that, for any $C \ni y \notin D_{x}$,

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0
$$

(iv) $\alpha_{n} \in[a, 1]$ for some $a \in(0,1)$.

Then the sequence $\left\{x_{n}\right\}$ generated iteratively by (3) converges strongly to $P_{F(T) \cap \Omega} x_{0}$ provided S_{r} is firmly nonexpansive.
Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T: C \rightarrow C$ be an asymptotically k-strict pseudo-contraction such that $F(T)$ is nonempty and bounded. Let $\delta \in(k, 1)$ be a constant and $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$. Assume $\alpha_{n} \in[a, 1]$ for some $a \in(0,1)$. For given $x_{0} \in C$ arbitrarily, let the sequence $\left\{x_{n}\right\}$ generated iteratively by

$$
\left\{\begin{array}{l}
z_{n}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left[\delta x_{n}+(1-\delta) T^{n} x_{n}\right] \tag{11}\\
C_{n}=\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}+\theta_{n}\right\} \\
Q_{n}=\left\{z \in C:\left\langle x_{n}-z, x_{0}-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}=P_{C_{n} \cap Q_{n}} x_{0}
\end{array}\right.
$$

where $\theta_{n}=\gamma_{n} \Delta_{n}^{2}, \Delta_{n}=\sup \left\{\left\|x_{n}-p\right\|: p \in F(T)\right\}<\infty$. Then the sequence $\left\{x_{n}\right\}$ defined by (11) converges strongly to $P_{F(T)} x_{0}$.
Proof. Set $\varphi(x)=0$ and $\Theta(x, y)=0$ for all $x, y \in C$ and put $r=1$. Take $K(x)=\frac{\|x\|^{2}}{2}$ and $\eta(y, x)=y-x$ for all $x, y \in C$. Then we have $y_{n}=x_{n}$. Hence, by the similar argument as that in the proof of Theorem 3.1, we can obtain the desired result. This completes the proof.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T: C \rightarrow C$ be an asymptotically nonexpansive mappings such that $F(T)$ is nonempty and bounded. Let $\delta \in(k, 1)$ be a constant and $\left\{\alpha_{n}\right\}$ be
a sequence in $[0,1]$. Assume $\alpha_{n} \in[a, 1]$ for some $a \in(0,1)$. Then the sequence $\left\{x_{n}\right\}$ defined by (11) converges strongly to $P_{F(T)} x_{0}$.

Now we give another iterative algorithm as follows.
Algorithm 3.2. Let C be a nonempty closed convex subset of a real Hilbert space $H, \varphi: C \rightarrow \mathbb{R}$ be a lower semicontinuous and convex real valued function, $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction and $T: C \rightarrow C$ be an asymptotically k-strict pseudo-contraction. Let r be a positive parameter and $\delta \in(k, 1)$ be a constant. Let $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$. Define the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ by the following manner:

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily, } \tag{12}\\
\Theta\left(y_{n}, x\right)+\varphi(x)-\varphi\left(y_{n}\right)+\frac{1}{r}\left\langle K^{\prime}\left(y_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, y_{n}\right)\right\rangle \geq 0, \forall x \in C, \\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left[\delta y_{n}+(1-\delta) T^{n} y_{n}\right] .
\end{array}\right.
$$

Finally we state and prove a weak convergence theorem concerning Algorithm 3.2.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\varphi: C \rightarrow \mathbb{R}$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction satisfying conditions (H1)-(H3) and let $T: C \rightarrow C$ be an asymptotically k-strict pseudo-contraction such that $F(T) \cap \Omega \neq \emptyset$. Assume that:
(i) $\eta: C \times C \rightarrow H$ is Lipschitz continuous with constant $\lambda>0$ such that;
(a) $\eta(x, y)+\eta(y, x)=0, \quad \forall x, y \in C$,
(b) $\eta(\cdot, \cdot)$ is affine in the first variable,
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
(ii) $K: C \rightarrow \mathbb{R}$ is η-strongly convex with constant $\sigma>0$ and its derivative K^{\prime} is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with constant $\nu>0$ such that $\sigma \geq \lambda \nu$;
(iii) for each $x \in C$, there exist a bounded subset $D_{x} \subset C$ and $z_{x} \in C$ such that, for any $C \ni y \notin D_{x}$,

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0
$$

(iv) $\alpha_{n} \in[a, b]$ for some $a, b \in(0,1)$ and $\sum_{n=1}^{\infty} \gamma_{n}<\infty$.

Then the sequence $\left\{x_{n}\right\}$ generated iteratively by (12) converges weakly to $w \in$ $P_{F(T) \cap \Omega}$ provided S_{r} is firmly nonexpansive, where $w=\lim _{n \rightarrow \infty} P_{F(T) \cap \Omega}\left(x_{n}\right)$.

Proof. By Lemma 2.1, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are all well-defined. Let $p \in F(T) \cap \Omega$, from $y_{n}=S_{r} x_{n}$, we have

$$
\left\|y_{n}-p\right\|=\left\|S_{r} x_{n}-S_{r} p\right\| \leq\left\|x_{n}-p\right\| .
$$

Therefore, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\|\delta\left(y_{n}-p\right)+(1-\delta)\left(T^{n} y_{n}-p\right)\right\|^{2} \\
= & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left[\delta\left\|y_{n}-p\right\|^{2}+(1-\delta)\left\|T^{n} y_{n}-p\right\|^{2}\right. \\
& \left.-\delta(1-\delta)\left\|y_{n}-T^{n} y_{n}\right\|^{2}\right] \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\{\delta\left\|y_{n}-p\right\|^{2}+(1-\delta)\left[\left(1+\gamma_{n}\right)\right.\right. \\
& \left.\left.\times\left\|y_{n}-p\right\|^{2}+k\left\|y_{n}-T^{n} y_{n}\right\|^{2}\right]-\delta(1-\delta)\left\|y_{n}-T^{n} y_{n}\right\|^{2}\right\} \\
= & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left\{\left[1+(1-\delta) \gamma_{n}\right]\left\|y_{n}-p\right\|^{2}\right. \\
& \left.+(1-\delta)(k-\delta)\left\|y_{n}-T y_{n}\right\|^{2}\right\} \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(1+\gamma_{n}\right)\left\|y_{n}-p\right\|^{2} \\
\leq & \left(1+\gamma_{n}\right)\left\|x_{n}-p\right\|^{2} .
\end{aligned}
$$

This implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-p\right\|$ exists. Hence, $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are all bounded and

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

Next, for $p \in F(T) \cap \Omega$, noting S_{r} is firmly nonexpansive, we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2} & =\left\|S_{r} x_{n}-S_{r} p\right\|^{2} \\
& \left.\leq \| S_{r} x_{n}-S_{r} p, x_{n}-p\right\rangle \\
& =\left\langle y_{n}-p, x_{n}-p\right\rangle \\
& =\frac{1}{2}\left\{\left\|y_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}\right\}
\end{aligned}
$$

and hence,

$$
\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2} .
$$

Therefore, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(1+\gamma_{n}\right)\left\|y_{n}-p\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}\right) \\
& +\alpha_{n} \gamma_{n}\left\|y_{n}-p\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\alpha_{n}\left\|x_{n}-y_{n}\right\|^{2}+\alpha_{n} \gamma_{n}\left\|y_{n}-p\right\|^{2} .
\end{aligned}
$$

So, we obtain

$$
\left\|x_{n}-y_{n}\right\|^{2} \leq \frac{1}{\alpha_{n}}\left\{\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}\right\}+\gamma_{n}\left\|y_{n}-p\right\|^{2} \rightarrow 0
$$

As $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ which converges weakly to w. From $\left\|x_{n}-y_{n}\right\| \rightarrow 0$, we also have that $y_{n_{i}} \rightarrow w$ weakly. First, as in the proof of Theorem 3.1, we can show $w \in \Omega$. Let us show that $w \in F(T)$.

Let $p \in F(T) \cap \Omega$. Since $\alpha_{n}(1-\delta) T^{n} y_{n}=x_{n+1}-\left(1-\alpha_{n}\right) x_{n}-\alpha \delta y_{n}$, we have

$$
\begin{aligned}
\left\|\alpha_{n}(1-\delta)\left(T^{n} y_{n}-x_{n}\right)\right\| & =\left\|x_{n+1}-x_{n}+\alpha_{n} \delta\left(x_{n}-y_{n}\right)\right\| \\
& \leq\left\|x_{n+1}-x_{n}\right\|+\alpha_{n}\left\|x_{n}-y_{n}\right\| \\
& \rightarrow 0
\end{aligned}
$$

which implies that

$$
\left\|T^{n} y_{n}-x_{n}\right\| \rightarrow 0
$$

Hence

$$
\left\|T^{n} y_{n}-y_{n}\right\| \leq\left\|T^{n} y_{n}-x_{n}\right\|+\left\|y_{n}-x_{n}\right\| \rightarrow 0
$$

Repeating the similar argument as Theorem 3.1, we can obtain

$$
\lim _{n \rightarrow \infty}\left\|y_{n}-T y_{n}\right\|=0
$$

From this and $y_{n_{i}} \rightarrow w$ weakly, we obtain $w \in F(T)$. Then, $w \in F(T) \cap \Omega$.
Let $\left\{x_{n_{j}}\right\}$ be another subsequence of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightarrow w^{\prime}$ weakly. Then, we have

$$
w^{\prime} \in F(T) \cap \Omega
$$

If $w \neq w^{\prime}$, from the opial theorem [20], we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left\|x_{n}-w\right\| & =\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-w\right\| \\
& <\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-w^{\prime}\right\| \\
& =\lim _{n \rightarrow \infty}\left\|x_{n}-w^{\prime}\right\| \\
& =\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-w^{\prime}\right\| \\
& <\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-w\right\| \\
& =\lim _{n \rightarrow \infty}\left\|x_{n}-w\right\| .
\end{aligned}
$$

This is a contradiction. So we have $w=w^{\prime}$. This implies that

$$
x_{n} \rightarrow F(T) \cap \Omega \quad \text { weakly. }
$$

Let $z_{n}=P_{F(T) \cap \Omega}\left(x_{n}\right)$. Since $w \in F(T) \cap \Omega$, we have $\left\langle x_{n}-z_{n}, z_{n}-w\right\rangle \geq 0$.
Hence, we have that $\left\{z_{n}\right\}$ converges strongly to some $w_{0} \in F(T) \cap \Omega$. Since $\left\{x_{n}\right\}$ converges weakly to w, we have

$$
\left\langle w-w_{0}, w_{0}-w\right\rangle \geq 0
$$

Therefore, we obtain

$$
w=w_{0}=\lim _{n \rightarrow \infty} P_{F(T) \cap \Omega}\left(x_{n}\right) .
$$

This completes the proof.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\varphi: C \rightarrow \mathbb{R}$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction satisfying conditions (H1)(H3) and let $T: C \rightarrow C$ be an asymptotically nonexpansive mapping such that $F(T) \cap \Omega \neq \emptyset$. Assume that:
(i) $\eta: C \times C \rightarrow H$ is Lipschitz continuous with constant $\lambda>0$ such that;
(a) $\eta(x, y)+\eta(y, x)=0, \quad \forall x, y \in C$,
(b) $\eta(\cdot, \cdot)$ is affine in the first variable,
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
(ii) $K: C \rightarrow \mathbb{R}$ is η-strongly convex with constant $\sigma>0$ and its derivative K^{\prime} is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with constant $\nu>0$ such that $\sigma \geq \lambda \nu$;
(iii) for each $x \in C$, there exist a bounded subset $D_{x} \subset C$ and $z_{x} \in C$ such that, for any $C \ni y \notin D_{x}$,

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0
$$

(iv) $\alpha_{n} \in[a, b]$ for some $a, b \in(0,1)$ and $\sum_{n=0}^{\infty} \gamma_{n}<\infty$.

Then the sequence $\left\{x_{n}\right\}$ generated iteratively by (12) converges weakly to $w \in$ $P_{F(T) \cap \Omega}$ provided S_{r} is firmly nonexpansive, where $w=\lim _{n \rightarrow \infty} P_{F(T) \cap \Omega}\left(x_{n}\right)$.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\varphi: C \rightarrow \mathbb{R}$ be a lower semicontinuous and convex functional. Let $\Theta: C \times C \rightarrow \mathbb{R}$ be an equilibrium bifunction satisfying conditions (H1)-(H3) such that $\Omega \neq \emptyset$. Assume that:
(i) $\eta: C \times C \rightarrow H$ is Lipschitz continuous with constant $\lambda>0$ such that;
(a) $\eta(x, y)+\eta(y, x)=0, \quad \forall x, y \in C$,
(b) $\eta(\cdot, \cdot)$ is affine in the first variable,
(c) for each fixed $y \in C, x \mapsto \eta(y, x)$ is sequentially continuous from the weak topology to the weak topology;
(ii) $K: C \rightarrow \mathbb{R}$ is η-strongly convex with constant $\sigma>0$ and its derivative K^{\prime} is not only sequentially continuous from the weak topology to the strong topology but also Lipschitz continuous with constant $\nu>0$ such that $\sigma \geq \lambda \nu$;
(iii) for each $x \in C$, there exist a bounded subset $D_{x} \subset C$ and $z_{x} \in C$ such that, for any $C \ni y \notin D_{x}$,

$$
\Theta\left(y, z_{x}\right)+\varphi\left(z_{x}\right)-\varphi(y)+\frac{1}{r}\left\langle K^{\prime}(y)-K^{\prime}(x), \eta\left(z_{x}, y\right)\right\rangle<0
$$

Let the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be generated by

$$
\left\{\begin{array}{l}
x_{0} \in C \text { chosen arbitrarily } \\
\Theta\left(y_{n}, x\right)+\varphi(x)-\varphi\left(y_{n}\right)+\frac{1}{r}\left\langle K^{\prime}\left(y_{n}\right)-K^{\prime}\left(x_{n}\right), \eta\left(x, y_{n}\right)\right\rangle \geq 0, \forall x \in C \\
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} y_{n}
\end{array}\right.
$$

where r is a positive parameter and $\left\{\alpha_{n}\right\}$ is a sequence $\in[a, b]$ for some $a, b \in$ $(0,1)$.
Then the sequence $\left\{x_{n}\right\}$ converges weakly to $w \in \Omega$ provided S_{r} is firmly nonexpansive, where $w=\lim _{n \rightarrow \infty} P_{\Omega}\left(x_{n}\right)$.

Proof. Taking $T=I$ in Theorem 3.2, we can obtain our desired result. This completes the proof.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T: C \rightarrow C$ be an asymptotically k-strict pseudo-contraction such that $F(T) \neq \emptyset$. Let $\delta \in(k, 1)$ be a constant and $\left\{\alpha_{n}\right\}$ be a real sequence in $[0,1]$. Assume that $\alpha_{n} \in[a, b]$ for some $a, b \in(0,1)$ and $\sum_{n=1}^{\infty} \gamma_{n}<\infty$. For given $x_{0} \in C$ arbitrarily, let the sequence $\left\{x_{n}\right\}$ generated iteratively by

$$
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left[\delta y_{n}+(1-\delta) T^{n} y_{n}\right] .
$$

Then $\left\{x_{n}\right\}$ converges weakly to $w \in P_{F(T)}$, where $w=\lim _{n \rightarrow \infty} P_{F(T)}\left(x_{n}\right)$.

References

[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-145.
[2] O. Chadli, I. V. Konnov, and J. C. Yao, Descent methods for equilibrium problems in a Banach space, Comput. Math. Appl. 48 (2004), no. 3-4, 609-616.
[3] O. Chadli, S. Schaible, and J. C. Yao, Regularized equilibrium problems with application to noncoercive hemivariational inequalities, J. Optim. Theory Appl. 121 (2004), no. 3, 571-596.
[4] O. Chadli, N. C. Wong, and J. C. Yao, Equilibrium problems with applications to eigenvalue problems, J. Optim. Theory Appl. 117 (2003), no. 2, 245-266.
[5] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.
[6] X. P. Ding, Y. C. Lin, and J. C. Yao, Predictor-corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems, Appl. Math. Mech. (English Ed.) 27 (2006), no. 9, 1157-1164.
[7] S. D. Flåm and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Programming 78 (1997), no. 1, Ser. A, 29-41.
[8] T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006), no. 5, 1140-1152.
[9] _ Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Analysis: Theory, Methods \& Applications 68 (2008), no. 9, 2828-2836.
[10] I. V. Konnov, S. Schaible, and J. C. Yao, Combined relaxation method for mixed equilibrium problems, J. Optim. Theory Appl. 126 (2005), no. 2, 309-322.
[11] C. Matinez-Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006), no. 11, 2400-2411.
[12] M. A. Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9 (2006), no. 3, 529-566.
[13] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[14] S. Plubtieng and R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007), no. 1, 455-469.
[15] A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, Nonlinear analysis and convex analysis, 609-617, Yokohama Publ., Yokohama, 2007.
[16] _, Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. Optim. Theory Appl. 133 (2007), no. 3, 359-370.
[17] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515.
[18] Y. Yao, Y. C. Liou, and J. C. Yao, Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory Appl. 2007, Art. ID 64363, 12 pp.
[19] __ A new hybrid iterative algorithm for fixed point problems, variational inequality problems and mixed equilibrium problems, Fixed Point Theory and Applications 2008 (2008), Article ID 417089, 15 pages.
[20] Y. Yao, M. A. Noor, and Y. C. Liou, On iterative methods for equilibrium problems, Nonlinear Anal. 70 (2009), no. 1, 497-509.
[21] L. C. Zeng and J. C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. 214 (2008), no. 1, 186-201.
[22] L. C. Zeng, S. Y. Wu, and J. C. Yao, Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems, Taiwanese J. Math. 10 (2006), no. 6, 1497-1514.

Yonghong Yao
Department of Mathematics
Tianjin Polytechnic University
Tianjin 300160, China
E-mail address: yaoyonghong@yahoo.cn
Haiyun Zhou
Department of Mathematics
Shijiazhuang Mechanical Engineering College
Shijiazhuang 050003, China
E-mail address: witman66@yahoo.com.cn
Yeong-Cheng Liou
Department of Information Management
Cheng Shiu University
Kaohsiung 833, Taiwan
E-mail address: simplex_liou@hotmail.com

[^0]: Received August 25, 2007.
 2000 Mathematics Subject Classification. 49J30, 47H10, 47H17, 49M05, 90C25, 90C99.
 Key words and phrases. mixed equilibrium problems, fixed point problems, iterative algorithm, asymptotically k-strict pseudo-contraction, Hilbert space.

 The first two authors were supported by National Natural Science Foundation of China Grant 10771050 and the third author was supported by the grant NSC 97-2221-E-230-017.

