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SOME BILINEAR ESTIMATES

Jiecheng Chen and Dashan Fan

Abstract. We establish some estimates on the hyper bilinear Hilbert
transform on both Euclidean space and torus. We also use a transference
method to obtain a Kenig-Stein’s estimate on bilinear fractional integrals
on the n-torus.

1. Introduction

Let B : S (Rn) × S (Rn) → S′ (Rn) be a continuous bilinear operator, from
the product of Schwartz spaces into the space of tempered distributions, which
commutes with simultaneous translations. Then there exists m ∈ S′ (Rn × Rn),
the symbol of B, such that

B (f, g) (x) =
∫

Rn

∫

Rn

m (ξ, η) f̂ (ξ) ĝ (η) e2πi〈x,(ξ+η)〉dξdη.

Such an operator and its variants have been extensively studied in recent
years. When m (ξ, η) is smooth, the Lp boundedness problem was well studied
by Coifman and Meyer. The problem becomes tougher when the symbol of a
bilinear operator is nonsmooth. To illustrate the later case, one famous example
is the bilinear Hilbert transform

H (f, g) (x) = p.v.π−1

∫

R

f (x− t) g (x + t) t−1dt

whose L2 × L∞ → L2 boundedness was a question related to a long time
conjecture of Calderón about the uniform boundedness with respect to α ∈
[−1, 0] of the family of Hilbert transforms hα defined by

hα (f, g) (x) = p.v.π−1

∫

R

f (x− t) g (x + αt) t−1dt.

Received September 15, 2007.
2000 Mathematics Subject Classification. 42B15, 42B25.
Key words and phrases. Hilbert transform, fractional integral, bilinear operators, Sobolev

spaces.
The research was supported partially by NSF in China (No.10571156, No.10671079,

No.10871173).

c©2009 The Korean Mathematical Society

609



610 JIECHENG CHEN AND DASHAN FAN

Historically, the interest in the bilinear Hilbert transform arose from the study
of the Cauchy integral and the Hilbert transform on Lipschitz curves and, as a
first step in study of these, the first commutator of Calderón. The reader can
find more details in [17].

One can easily check that the symbol of H is i sgn (ξ − η), which is not
continuous along the line ξ = η.

The operator B has its periodic version on the n-torus Tn :

B̃
(
f̃ , g̃

)
(x) =

∑

k∈Zn

∑

ν∈Zn

m (k, υ) akbυe2πi〈x,(k+υ)〉,

where {ak} and {bυ} are the Fourier coefficients of f̃ , g̃ ∈ C∞ (Tn), respectively.
Thus the periodic version of H is

H̃
(
f̃ , g̃

)
(x) = i

∑

k∈Z

∑

ν∈Z
sgn (k − υ) akbυe2πix(k+υ).

The following celebrated theorem of Lacey and Thiele solves the conjecture
of Calderón:

Theorem A ([13]). Let 1 < q, r ≤ ∞ and 2
3 < p < ∞. Then

‖H (f, g)‖Lp(R) ≤ C ‖f‖Lq(R) ‖g‖Lr(R) ,

provided 1
p = 1

q + 1
r .

Using a transference method, we can obtain an analog for the periodic ver-
sion:

Theorem B ([5]). Let 1 < q, r ≤ ∞ and 2
3 < p < ∞. Then

∥∥∥H̃
(
f̃ , g̃

)∥∥∥
Lp(T )

≤ C
∥∥∥f̃

∥∥∥
Lq(T )

‖g̃‖Lr(T ) ,

provided 1
p = 1

q + 1
r .

To study the operator B in the one dimension case, Gilbert and Nahmod
established some more general theorems by considering some related cone op-
erators. For n = 1, fix an angle θ, let

CPθ
: (f, g) →

∫

Pθ

m (ξ, η) f̂ (ξ) ĝ (η) e2πix(ξ+η)dξdη

be the cone operator associated with the half plane

Pθ =
{
(ξ, η) ∈ R2 : ξ tan θ − η > 0

}
.

In [6], Gilbert and Nahmod proved the following interesting result.
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Theorem C ([6]). Let m = m (ξ, η) be a function having derivatives of all
orders in the half plane Pθ such that for any β ∈ Z+ × Z+,

∣∣Dβm (ξ, η)
∣∣ ≤ C (dist ((ξ, η) , ∂Pθ))

−|β|
, |β| > 0.

Then, if ∂Pθ is not one of the coordinate axes and θ 6= −π
4 , CPθ

is bounded
from Lr (R)× Lq (R) into Lp (R) with 1

q + 1
r = 1

p < 3
2 .

The importance of the above result has to do, in particular, with its possible
extensions to the multilinear setting, as done in the work of Muscalu, Tao, and
Thiele [15] and to the x-variable setting (that is the multiplier depends on x,
ξ, η) initiated in the work of Bényi, Nahmod and Torres [1]; see also [2].

In this paper, we will use Theorem C to study the hyper bilinear Hilbert
transform

Hα (f, g) (x) = p.v.π−1

∫

R

f (x− t) g (x + t) t−1 |t|−α
dt, 0 ≤ α < 1.

One easily checks that, up to a constant multiple, the symbol of Hα is
m (ξ, η) = i sgn (ξ − η) |ξ − η|α , which is continuous, but not smooth. Also,
the periodic version of Hα is

H̃α

(
f̃ , g̃

)
(x) = i

∑

k

∑
ν

sgn (k − υ) |k − υ|α akbυe2πix(k+υ).

One of the main purposes of this paper is to study the Lp boundedness of
Hα. Then, using a transference method, we obtain an analog for the periodic
version H̃α. Our first result is stated in the following theorem:

Theorem 1. If 0 ≤ α < 1, 1 < q, r < ∞, and 1
q + 1

r = 1
p < 3

2 , then we have

‖Hα (f, g)‖Lp(R) ≤ C ‖f‖Lq
α(R) ‖g‖Lr(R) + ‖f‖Lq(R) ‖g‖Lr

α(R) ;
∥∥∥H̃α

(
f̃ , g̃

)∥∥∥
Lp(T )

≤ C
∥∥∥f̃

∥∥∥
Lq

α(T )
‖g̃‖Lr(T ) +

∥∥∥f̃
∥∥∥

Lq(T )
‖g̃‖Lr

α(T ) ,

where Lp
α is the homogeneous Sobolev Lp space of order α.

Remark. In the theorem, if we take g (x) = 1 and r = ∞, then we obtain results
for the classical hyper Hilbert transform (see [8]).

Other interesting operators are bilinear operators with non-singular kernels.
For simplicity, we introduce the bilinear fractional integral Fα on Rn studied
by Kenig and Stein:

Fα (f, g) (x) =
∫

Rn

f (x + t) g (x− t) |t|α−n
dt, 0 < α < n.

In [12], Kenig and Stein established the following theorem (see also [4] for
the study of a rough bilinear fractional integral).
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Theorem D. Assume that 0 < α < n, 1
r + 1

q > α
n , 1

p = 1
q + 1

r − α
n , and

1 ≤ q, r ≤ ∞. Then
(a) if 1 < q, r, then

‖Fα (f, g)‖Lp(Rn) ≤ C ‖f‖Lq(Rn) ‖g‖Lr(Rn) ;

(b) if 1 ≤ q, r and either q or r is one, then

‖Fα (f, g)‖Lp,∞(Rn) ≤ C ‖f‖Lq(Rn) ‖g‖Lr(Rn) .

After a simple computation, one sees that, up to a constant, the symbol of
Fα is |ξ − η|−α

, ξ, η ∈ Rn. Thus the periodic version F̃α of Fα on the n-torus
Tn is defined by

(1) F̃α

(
f̃ , g̃

)
(x) =

∑

(k,j)∈Zn×Zn:k 6=j

|k − j|−α
akbje

2πi〈x,(k+j)〉.

Recall that on a compact Lie group G, following Stein [16, p. 58], the Riesz
potential on G is defined by (see [3])

Iα (f) (x) =
∫

G

f
(
xy−1

)
Kα (y) dy,

where Kα (y) is the kernel function defined by

(2) Kα (y) = −Γ
(α

2

)−1
∫ ∞

0

t
α
2∇2Wt (y) dt

and Wt (y) is the heat kernel on G. We can use Kα (y) to define the bilinear
Riesz potential

(3) Iα (f, g) (x) =
∫

G

f (xy) g
(
xy−1

)
Kα (y) dy.

Taking Fourier series, one easily checks that, in the distribution sense, the
definitions of (1) and (3) are equivalent if one takes G to be the n-torus Tn.
Thus, naturally, we expect that we may use a transference method (for instance
see [5] for theorems of DeLeeuw type) to transfer the boundedness result of Fα

to those of F̃α. However, it is known that, in general, the classical transference
method fails even in the linear case if p 6= q (see [10], for example). To overcome
this obstacle, we will use a combination of the classical transference method and
methods used in [12]. We establish the following periodic analog of Theorem D.

Theorem 2. Assume that 0 < α < n, 1
r + 1

q > α
n , 1

p = 1
q + 1

r − α
n , and

1 ≤ q, r ≤ ∞. Then
(a) if 1 < q, r, then∥∥∥F̃α

(
f̃ , g̃

)∥∥∥
Lp(T n)

≤ C
∥∥∥f̃

∥∥∥
Lq(T n)

‖g̃‖Lr(T n) ;

(b) if 1 ≤ q, r and either q or r is one, then∥∥∥F̃α

(
f̃ , g̃

)∥∥∥
Lp,∞(T n)

≤ C
∥∥∥f̃

∥∥∥
Lq(T n)

‖g̃‖Lr(T n) .
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The plan of the paper is as follows: in Section 2, we recall the definition of
homogeneous Sobolev spaces and state an easy lemma that will be needed later.
Two main theorems, Theorem 1 and Theorem 2, are proved In Sections 3 and
4, respectively. We use the letter “C” to denote (possibly different) constants
that are independent of the essential variables in the argument.

2. Sobolev spaces and Lemma 1

Let Φ be a fixed function in S (Rn) such that the Fourier transform Φ̂ of Φ has
support in

{
ξ ∈ R : 1

2 ≤ |ξ| ≤ 2
}

and satisfies
∣∣∣Φ̂ (ξ)

∣∣∣ ≥ C > 0 if 3
5 ≤ |ξ| ≤ 5

3 .
The homogeneous Sobolev space Lp

α (Rn) of order α is the collection of all
f ∈ S′ (Rn) such that

‖f‖Lp
α(Rn) =

∥∥∥∥∥
{∫ ∞

0

(
t−α |Φt ∗ f(x)|)2

t−1dt

} 1
2

∥∥∥∥∥
Lp

x(Rn)

< ∞, 1 < p < ∞.

The homogeneous Sobolev space Lp
α (Tn) of order α is the collection of all

f̃ ∈ S′ (Tn) such that

∥∥∥f̃
∥∥∥

Lp
α(T n)

=

∥∥∥∥∥
{∫ ∞

0

(
t−α

∣∣∣Φ̃t ∗ f̃(x)
∣∣∣
)2

t−1dt

} 1
2

∥∥∥∥∥
Lp

x(T n)

< ∞, 1 < p < ∞.

In the above definition,

Φt (x) = t−nΦ
(x

t

)
and Φ̃t (x) =

∑

k∈Zn

t−nΦ
(

x + k

t

)
.

Since the definition is independent of the choice of Φ, it is easy to check that

‖Rαf‖Lp(Rn)
∼= ‖f‖Lp

α(Rn) , with (Rαf) ˆ (ξ) = |ξ|α f̂ (ξ) .

Also, if α is a positive integer, then ‖f‖Lp
α(Rn)

∼= ‖Dαf‖Lp(Rn).

Let δ be a positive number less than 1/2, and define the n-cells Q and Ωδ

by

Q =
[
−1

2
,
1
2

]n

, Ωδ =
[
−1

2
− δ,

1
2

+ δ

]n

.

Q is the fundamental cube on which
∫

T n

f̃ (x) dx =
∫

Q

f̃ (x) dx, ∀f̃ ∈ L1 (Tn) .

Let Ψ be a function in S (Rn) satisfying supp(Ψ) ⊆ Ωδ, 0 ≤ Ψ (x) ≤ 1 and
Ψ (x) ≡ 1 on Q. We denote Ψ

1
N (x) = Ψ

(
x
N

)
for an integer N . The following

lemma can be found in [5].
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Lemma 1. Let B be a bilinear operator with symbol m(ξ, η). For any C∞ (Tn)
functions f̃ (x) =

∑
k∈Zn ake2πi〈k,x〉 and g̃ (x) =

∑
υ∈Zn bυe2πi〈υ,x〉, one has

Ψ
( x

N

)2

B̃
(
f̃ , g̃

)
(x)−B

(
Ψ

1
N f̃ , Ψ

1
N g̃

)
(x) = −EN

(
f̃ , g̃

)
(x) ,

where the error term EN (f̃ , g̃) (x) is equal to
∑

k

∑
ν

akbυe2πi〈k+υ,x〉
∫

R2n

Ψ̂ (u) Ψ̂ (v)∆Nmk,υ (u, v) e2πi〈u+v, x
N 〉dudv,

and
∆Nmk,υ (u, v) = m

(
k +

u

N
, υ +

v

N

)
−m (k, υ) .

Proof. Check the Fourier transforms on both sides of the equality involving B
and the error EN . ¤

3. Proof of Theorem 1

The ideas used in the proof of part (a) of our theorem are reminiscent of
the well-established techniques involving commutator type estimates that go
back to the work of Kato and Ponce [11] and the extension of the Leibniz rule
for fractional derivatives to the general setting of bilinear pseudodifferential
operators in [1]. By symmetry, we can assume

Hα (f, g) (x) =
∫

ξ>η

(ξ − η)α
f̂ (ξ) ĝ (η) e2πix(ξ+η)dξdη.

Thus Hα is a cone operator CPθ
with θ = π

4 . We will use Theorem C to obtain
the boundedness of Hα. We also note dist

(
(ξ, η) , ∂Pπ

4

)
= |ξ − η| for any point

(ξ, η). We partition the unity as

1 = χ1 (ξ, η) + χ2 (ξ, η) + χ3 (ξ, η) + χ4 (ξ, η) + χ5 (ξ, η) ,

where χ1 (ξ, η) is supported on the region {ξ > η : |ξ| ≥ 4 |η|} and equal to 1
on the region {ξ > η : |ξ| ≥ 8 |η|} , χ2 (ξ, η) is supported on the region {ξ > η :
|η| ≥ 4 |ξ|} and equal to 1 on the region {ξ > η : |η| ≥ 8 |ξ|} and χ3, χ4, χ5 are
supported on regions Ω3, Ω4, Ω5 in which |ξ| ∼= |η|, and such that we have
bounds ∣∣∇jχi (ξ, η)

∣∣ ≤ C
(
ξ2 + η2

)− j
2

for all j ≥ 0 and i = 1, 2, 3, 4, 5. We can then partition

Hα (f, g) (x) =
5∑

j=1

Tj (f, g) (x) ,

where

Tj (f, g) (x) =
∫

ξ>η

(ξ − η)α
χj (ξ, η) f̂ (ξ) ĝ (η) e2πix(ξ+η)dξdη.
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We will estimate each Tj . For j = 1, we write

T1 (f, g) (x) =
∫

ξ>η

m1 (ξ, η) (Rαf) ˆ (ξ) ĝ (η) e2πix(ξ+η)dξdη

with
m1 (ξ, η) = (ξ − η)α

χ1 (ξ, η) |ξ|−α
.

Note that in the support of m1, one has

|ξ| ∼= |ξ − η| ∼=
(
ξ2 + η2

) 1
2 .

Thus m1 satisfies the condition in Theorem C, so that we have

‖T1 (f, g)‖Lp(R) ≤ C ‖Rαf‖Lq(R) ‖g‖Lr(R)
∼= C ‖f‖Lq

α(R) ‖g‖Lr(R) .

A similar argument shows that

‖T2 (f, g)‖Lp(R) ≤ C ‖f‖Lq(R) ‖g‖Lr
α(R) .

In the supports of m3,m4,m5, we have |ξ| ∼= |η| ∼=
(
ξ2 + η2

) 1
2 , and |ξ| ≥

c |ξ − η| for some c > 0. Thus for j = 3, 4, 5, and any nonnegative α1, α2 with
α1 + α2 = α, we have the better estimates

‖Tj (f, g)‖Lp(R) ≤ C ‖f‖Lq
α1 (R) ‖g‖Lr

α2
(R) .

Part (a) of Theorem 1 is proved. We now prove part (b) of the theorem. Taking
δ = 1

4 and applying Lemma 1 on the operators Hα and H̃α, one easily sees that
EN (f̃ , g̃) (x) converges to zero uniformly as N → ∞. Thus, following an idea
in the proof of Theorem 3 of [5] and noting that H̃α(f̃ , g̃) is a periodic function,
one has

∥∥∥H̃α

(
f̃ , g̃

)∥∥∥
Lp(T )

∼=
{

N−1

∫ N/2

−N/2

| H̃α

(
f̃ , g̃

)
(x) |p dx

}1/p

for any integer N. By the choice of Ψ, we have

∥∥∥H̃α

(
f̃ , g̃

)∥∥∥
Lp(T )

∼=
{

N−1

∫ N/2

−N/2

| Ψ(x/N)2H̃α

(
f̃ , g̃

)
(x) |p dx

}1/p

.

By Lemma 1, we now have
∥∥∥H̃α

(
f̃ , g̃

)∥∥∥
Lp(T )

¹ lim
N→∞

N− 1
p

∥∥∥Hα

(
Ψ

1
N f̃ , Ψ

1
N g̃

)∥∥∥
Lp(R)

.

Thus, by (a) of the theorem, we know that
∥∥∥H̃α(f̃ , g̃)

∥∥∥
Lp(T )

is bounded by

C lim
N→∞

N− 1
p

{∥∥∥Ψ
1
N f̃

∥∥∥
Lq

α(R)

∥∥∥Ψ
1
N g̃

∥∥∥
Lr(R)

+
∥∥∥Ψ

1
N f̃

∥∥∥
Lq(R)

∥∥∥Ψ
1
N g̃

∥∥∥
Lr

α(R)

}
.
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By the choice of Ψ1/N (x) and noting that f̃ is a periodic function, it is easy
to see that for any q > 0

(4) N− 1
q

∥∥∥Ψ
1
N f̃

∥∥∥
Lq(R)

¹
(

1
N

∫ N

−N

| f̃(x) |q dx

)1/q

'‖ f̃ ‖Lq(T )

uniformly for all positive integers N . Thus, to complete the proof, it remains
to show

lim
N→∞

N−1
∥∥∥Ψ

1
N f̃

∥∥∥
q

Lq
α(R)

≤ C
∥∥∥f̃

∥∥∥
q

Lq
α(T )

.

By the definition, we write

N−1
∥∥∥Ψ

1
N f̃

∥∥∥
q

Lq
α(R)

= N−1

∫

|y|≥4N

{∫ ∞

0

(
t−α

∣∣∣Φt ∗
(
Ψ

1
N f̃

)
(y)

∣∣∣
)2

t−1dt

} q
2

dy

+ N−1

∫

|y|<4N

{∫ ∞

0

(
t−α

∣∣∣Φt ∗
(
Ψ

1
N f̃

)
(y)

∣∣∣
)2

t−1dt

} q
2

dy

= L (N) + R (N) .

To estimate L(N), note that Ψ
1
N (x) has compact support on

[− 3N
4 , 3N

4

]
.

Thus if |y| ≥ 4N , then |y − x| ≥ 2N . Let M < |y| be a positive number. We
further write

L (N) = N−1

∫

|y|≥4N

{∫ |y|

M

(
t−α

∣∣∣Φt ∗
(
Ψ

1
N f̃

)
(y)

∣∣∣
)2

t−1dt

} q
2

dy

+ N−1

∫

|y|≥4N

{∫ ∞

|y|

(
t−α

∣∣∣Φt ∗
(
Ψ

1
N f̃

)
(y)

∣∣∣
)2

t−1dt

} q
2

dy

+ N−1

∫

|y|≥4N

{∫ M

0

(
t−α

∣∣∣Φt ∗
(
Ψ

1
N f̃

)
(y)

∣∣∣
)2

t−1dt

} q
2

dy

= L1 (N) + L2 (N) + L3 (N) .

Note that when |y| ≥ 4N and x ∈ supp
(
Ψ

1
N

)
, one has

|Φt (x− y)| ≤ C (t + |y − x|)−1 ≤ C (t + |y|)−1
.

Thus, by a simple computation and (4),

L2 (N) ≤ N−1

∫

|y|≥4N

{∫ ∞

|y|
t−2α−3dt

} q
2

dy
∥∥∥Ψ

1
N f̃

∥∥∥
q

L1(R)

¹ N−qα
∥∥∥f̃

∥∥∥
q

L1(T )
= o(1), as N →∞.
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To estimate L3 (N), we note that Φt(x) = O(t |x|−2). Then

L3 (N) ∼= N−1

∫

|y|≥4N

|y|−2q

(∫ M

0

t−α+1dt

) q
2

dy
∥∥∥Ψ

1
N f̃

∥∥∥
q

L(R)

¹ M−qα/2
∥∥∥f̃

∥∥∥
q

L1(T )
.

Also, it is easy to check that

L1 (N) ≤ CN−1

∫

|y|≥4N

(∫ |y|

M

(t + |y|)−2
t−1−2αdt

) q
2

dy
∥∥∥Ψ

1
N f̃

∥∥∥
q

L(R)

¹ M−qα
∥∥∥f̃

∥∥∥
q

L1(T )
.

Choosing M = N1/2, we obtain that limN→∞ L (N) = 0. Thus, to finish the
proof of the theorem, it remains to show

lim
N→∞

R (N) ≤ C
∥∥∥f̃

∥∥∥
q

Lq
α(T )

,

where

R (N) = CN−1

∫

|y|<4N

{∫ ∞

0

(
t−α

∣∣∣Φt ∗
(
Ψ

1
N f̃

)
(y)

∣∣∣
)2

t−1dt

} q
2

dy.

Choose both Ψ and Φ to be radial. For f̃ (x) =
∑

k ake2πikx, by the
Plancherel theorem and an easy computation, we see that

Φt ∗
(
Ψ

1
N f̃

)
(y) ∼=

∑
ake2πiky

∫

R
NΨ̂ (Nx)

(
Φ̂ (t (x + k))− Φ̂ (tx)

)
e2πixydx

+ CΨ
( y

N

)
Φ̃t ∗ f̃ (y) .

Thus, R (N) is dominated by

CN−1

∫

|y|<4N

{∑ |ak|
∫∞
0

(
t−α

∫
R

∣∣∣NΨ̂ (Nx)
(
Φ̂ (t (x + k))− Φ̂ (tx)

)∣∣∣ dx
)2

t−1dt
} q

2
dy

+ CN−1

∫

|y|<4N

{∫ ∞

0

(
t−α

∣∣∣Ψ
( y

N

)
Φ̃t ∗ f̃ (y)

∣∣∣
)2

t−1dt

} q
2

dy.

Since {ak} tends to zero rapidly as k → ∞, one easily checks that the first
term above converges to zero as N →∞. The second term is bounded by

C

∫

Q

{∫ ∞

0

(
t−α

∣∣∣Φ̃t ∗ f̃ (y)
∣∣∣
)2

t−1dt

} q
2

dy ¹ C
∥∥∥f̃

∥∥∥
q

Lq
α(T )

.
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The proof is completed.

4. Proof of Theorem 2

Let Φ be the function as in the definition of Lp
α and let φk(ξ) = Φ̂

(
2kξ

)
and

φ(ξ) = Φ̂ (ξ). Then

suppφk ⊆
{
ξ : 2−k ≤ |ξ| ≤ 2−k+1

}
.

We may assume that φ is radial and
∑

k∈Z φk (x) ≡ 1 for all x ∈ Rn. Thus for
any f, g ∈ S (Rn), we have

Fα (f, g) (x) =
∑

k

∫

Rn

f (x + t) g (x− t) |t|α−n
φk (t) dt =

∑

k∈Z
Lk (f, g) (x) .

Similarly, for any f̃ , g̃ ∈ S (Tn) , we have

F̃α

(
f̃ , g̃

)
(x) =

∑

k

∫

Q

f̃ (x + t) g̃ (x− t) |t|α−n
Kα (t)φk (t) dt

=
∞∑

k=0

L̃k

(
f̃ , g̃

)
(x) .

The following is Lemma 5 in [12]:

Lemma 2 (Kenig-Stein).
(i) ‖Lk (f, g)‖

L
1
2 (Rn)

≤ C2−kα ‖f‖L1(Rn) ‖g‖L1(Rn) ;

(ii) ‖Lk (f, g)‖L1(Rn) ≤ C2k(n−α) ‖f‖L1(Rn) ‖g‖L1(Rn) .

Using the above lemma, Kenig and Stein proved that Fα is bounded from
L1 (Rn)× L1 (Rn) to Lq,∞ (Rn) with 1

q = 2− α
n . Also, it is trivial to see that

Fα (f, g) (x) ≤ ‖f‖∞ Iα (f) (x) , Fα (f, g) (x) ≤ ‖g‖∞ Iα (g) (x) ,

where

Iα (f) (x) =
∫

Rn

f (x− y) |y|−n+α
dy

is the ordinary fractional integral. Thus one easily obtains the boundedness of
Fα : L∞ × Lr → Lq and Lr × L∞ → Lq with 1

q = 1
r − α

n . Then Theorem D
follows by complex bilinear interpolations as in the work of [9], see also the
work of [7].

Now return to the case F̃α(f̃ , g̃) (x). We may assume that both f̃ and g̃ are
nonnegative. An easy computation shows that the kernel defined in (2) satisfies
|Kα (y)| ≤ C |y|−n+α . Thus we also have

F̃α

(
f̃ , g̃

)
(x) ≤

∥∥∥f̃
∥∥∥

L∞(T n)

∫

Q

g̃ (x− t) |Kα (t)| dt,
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F̃α

(
f̃ , g̃

)
(x) ≤ ‖g̃‖L∞(T n)

∫

Q

f̃ (x− t) |Kα (t)| dt,

where
Jα

(
f̃
)

(x) =
∫

Q

f̃ (x− t) |Kα (t)| dt

is the ordinary Riesz potential on the n-torus whose boundedness of L∞×Lr →
Lq and Lr×L∞ → Lq with 1

q = 1
r− α

n is well known. Thus to prove Theorem 2,
by interpolation, it suffices to establish the boundedness of L1 (Tn)×L1 (Tn) →
Lq,∞ (Tn) with 1

q = 2 − α
n . To this end, by checking the proof in [12], one

only needs to establish the following lemma which is an analogous version of
Lemma 2:

Lemma 3.
(i)

∥∥∥L̃k

(
f̃ , g̃

)∥∥∥
L

1
2 (T n)

≤ C2−kα
∥∥∥f̃

∥∥∥
L1(T n)

‖g̃‖L1(T n) ;

(ii)
∥∥∥L̃k

(
f̃ , g̃

)∥∥∥
L1(Rn)

≤ C2k(n−α)
∥∥∥f̃

∥∥∥
L1(T n)

‖g̃‖L1(T n) .

Proof. The inequality in (ii) is an easy consequence of the Fubini theorem. To
prove (i) we will use Lemma 1 to transfer the result of Lemma 2. We may
assume that both f̃ and g̃ are nonnegative. Thus we have

∣∣∣L̃k

(
f̃ , g̃

)
(x)

∣∣∣ ≤ C

∫

Q

f̃ (x + t) g̃ (x− t) |t|−n+α
φk (t) dt.

Without loss of generality, we may again write
∣∣∣L̃k

(
f̃ , g̃

)
(x)

∣∣∣ =
∫

Q

f̃ (x + t) g̃ (x− t) |t|−n+α
φk (t) dt.

By Lemma 1, it is easy to see that
∥∥∥L̃k

(
f̃ , g̃

)∥∥∥
1
2

L
1
2 (T n)

∼= N−n

∫

NQ

Ψ
( x

N

)2 ∣∣∣L̃k

(
f̃ , g̃

)
(x)

∣∣∣
1
2

dx

≤ N−n

∫

Rn

∣∣∣Lk

(
Ψ

1
N f̃ , Ψ

1
N g̃

)
(x)

∣∣∣
1
2

dx + N−n

∫

NQ

∣∣∣EN

(
f̃ , g̃

)
(x)

∣∣∣
1
2

dx.

We may check that EN converges to zero uniformly onx as N →∞. Letting
N →∞ and by (i) of Lemma 2, we obtain that

‖ L̃k

(
f̃ , g̃

)
‖

L
1
2 (T n)

¹ lim
N→∞

N−2n

{∫

Rn

∣∣∣Lk

(
Ψ

1
N f̃ , Ψ

1
N g̃

)
(x)

∣∣∣
1
2

dx

}2

¹ lim
N→∞

2−kα
∥∥∥N−nΨ

1
N f̃

∥∥∥
L1(Rn)

∥∥∥N−nΨ
1
N g̃

∥∥∥
L1(Rn)

∼= 2−kα
∥∥∥f̃

∥∥∥
L1(T n)

‖g̃‖L1(T n) .

The proof is finished. ¤
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