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COMMUTATIVITY AND HYPONORMALITY OF TOEPLITZ
OPERATORS ON THE WEIGHTED BERGMAN SPACE

YUFENG LU AND CHAOMEI LI1U

ABSTRACT. In this paper we give necessary and sufficient conditions that
two Toeplitz operators with monomial symbols acting on the weighted
Bergman space commute. We also present necessary and sufficient con-
ditions for the hyponormality of Toeplitz operators with some special
symbols on the weighted Bergman space. All the results are stated in
terms of the Mellin transform of the symbol.

1. Preliminaries

Let D be the open unit disk in C, and let dA be the normalized area measure
on D. For —1 < a < 400, the weighted Bergman space A2 of the disk is the
space of analytic functions in L?(D, dA,), where

dAy(2) = (a+ 1)1 — |2[*)*dA(2).

It is well known that A2 is a closed subspace of the Hilbert space L?(D, dA,).
Let P denote the orthogonal projection from L?(ID,dA,) onto A%. Let L>°(D)
be the space of essentially bounded area measurable functions on D. For ¢ €
L>(D), the Toeplitz operator with the symbol ¢ is the operator T, : A2 — A2
defined by

Tsof:P((Pf)v fEAi.

This paper is motivated by the following two problems: The first one is to
find necessary and sufficient conditions that two Toeplitz operators acting on
the weighted Bergman space commute; the second one is to describe hyponor-
mality of Toeplitz operators acting on the weighted Bergman space. Knowing
commutativity of two Toeplitz operators and hyponormality of Toeplitz oper-
ators often helps us give an idea of what these operators look like; conversely,
trying to determine commutativity of two Toeplitz operators and hyponormal-
ity of Toeplitz operators often leads to interesting problems in analysis.
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In the case of the classical Hardy space H?, Brown and Halmos [3] char-
acterized commutativity of Toeplitz operators on H?. On the Bergman space
of the unit disk, the first complete result was obtained by Axler and Cuckovié
who characterized commuting Toeplitz operators with harmonic symbols [1].
Stroethoff extended their result to essentially commuting Toeplitz operators
[23]. Axler, Cuckovié and Rao showed that if two Toeplitz operators commute
and the symbol of one of them is analytic and nonconstant, then the other one is
also analytic [2]. Cuckovié, and Rao studied Toeplitz operators that commute
with Toeplitz operators with monomial symbols [8]. On the Bergman space
of several complex variables, the situation is much more complicated. Zheng
studied commuting Toeplitz operators with pluriharmonic symbols on the unit
ball in C™ [25]; Lee studied weighted cases [17]. Lu characterized commuting
Toeplitz operators on the Bergman space of the bidisk with H>(D?)+H> (D?)
symbols [19]. B. R. Choe, H. Koo, and Y. J. Lee obtained characterizations of
(essentially) commuting Toeplitz operators with pluriharmonic symbols on the
Bergman space of the polydisk [4].

A bounded linear operator A on a Hilbert space is said to be hyponormal
if its selfcommutator [A*, A] := A*A — AA* is positive semidefinite. The hy-
ponormality of Toeplitz operators on the Hardy space has been studied by
many mathematicians, see [6, 7, 9, 10, 11, 12, 13, 15, 16, 20, 22, 26]. The
hyponormality of Toeplitz operators on the Bergman space has been studied
by H. Sadraoui [21] and 1. S. Hwang [14].

In this paper we find necessary and sufficient conditions for a symbol that
produces a Toeplitz operator on the weighted Bergman space that commutes
with another such operator whose symbol is a monomial. We also discuss
the hyponormality of Toeplitz operators on the weighted Bergman space and
give necessary and sufficient conditions for some special symbols that produce
hyponormal Toeplitz operators on the weighted Bergman space.

2. Commutativity of Toeplitz operators
We start this section with a decomposition of the space L?(ID,dA,), where
a > —1. Let
1
R = {a :D — C radial ‘ / la(r)|?r(1 —r?)*dr < oo},
0
and let Z, x = "9 %, for k € Z. Since for u € o i, u(re??) = e*a(r) and

[ e = [ - 2yasar <o

each %, 1 is a subspace of L?(D,dA,).
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It is also clear that %o, L %o, if k # 1. Every polynomial in z and Z can
be written as

p(z,2) = Z Z aijziij

k=—N \i—j=k

for some N, and in polar coordinates it has the form

N
E etko E aijriﬂ 6@6“’“9%’&.
k=—N

i—j=k kEZ

Since the set of all the polynomials p(z, z) is dense in C(D) and C(D) is dense
in L?(D,dA,), we can conclude that L*(D,dA,) = @,z e’ Z., ie., every
function u € L?(D, dA,) has the form

oo

u(re'®) = Z eFu(r),  up € R

One of our most useful tools in the following calculations is the Mellin trans-
form (closely related, using the change of variables x = e, to the Laplace
transform). The Mellin transform @ of a function ¢ is defined by the equation

B

o(z) = /000 o(x)z* tdx.

By [18] we know that $(z) is well defined on {z € C : Re z > 2} and analytic
on {z € C:Re z > 2} if p € L1([0, 1], rdr).

Now we start to discuss the commuting problem of two Toeplitz operators on
the weighted Bergman space. Let Ny = N|J{0}. While our method is partially
adapted from [8], substantial amount of extra work is necessary for the setting
of the weighted Bergman space.

Theorem 2.1. Let (re®?) = Y77 ey (r) and p(r) = r™ € L>(D),
where o > —1, Y, € Zo and m € N. If T, Ty = TyT,, then ¢ is a radial
function.

Proof. For every A € Ny, we have

F(A+2+a)F(A+%+1)ZA
PA+Z +24+a)D(A+1)" 7

N 2k 4+ 22 +2)TT(E+ A+ 2+ a)
T — (

vt ) Tk+A+2)T(1+a)

A _
T,2" =

Do (2A+ ke + 2)2F T,
k=—o



624 YUFENG LU AND CHAOMEI LIU
where (2k + 2\ + 2)* = max{2k + 2) + 2,0}, iak(z) is the Mellin transform
of the function vy, (r)(1 — r?)®. Thus
TyT,2*
B i k+22+2) T(k+A+24+a) TA+2+a)T(A+ 2 +1)
B L(k+A+2)0(1+ ) PFA+Z +24+a)0(A+1)

k=—o0
X o p(2XA + K+ 2)25
T, Ty
_ i 2k + 22+ 2 T(k+ A4+ 2+ ) T(k+ A+ 2+ )T (k+ A+ 2 +1)
- [k +A+2)0(1+a) T(k+A+ 2 +2+a)l(k+A+1)

k=—oc0
X Dok (2A + k + 2)2FHA
Hence for £+ A >0,

k+2X+2)T(k+A+2+a)T
Fk+A+2)(1+a) T
(2k + 22+ 2)T(k+A+2+a)T
T(k+tA+2T(1+a) T

X Yok (2A+ k +2),

A+2+a)T(A+ 2 4+1) ~
ak 2N+ +2
A+%+2+Q)F(A+1)w’k( +h+2)
k+A+24a)T(k+A+241)
E4+A+2 42+ a)(k+X1+1)

—~—~ |~

ie.,

<F(A+2+a)r(>\+’§+1) F(k+)\+2+a)F(k+)\+’§+1)>
(1)

PA+24+24+a)l(A+1) TR+A+Z+24+a)l(k+A+1)
X Dok (2A + k +2) = 0.

For a fixed k, we start to discuss the necessary and sufficient conditions that
guarantee

FA+24+a)TA+F+1) Th+A+2+a)l(k+A+3 +1)

FA+Z2+24+a)l(A+1) TE+A+Z+24+)l(k+1+1)
for all A € Nyp. If
FA+24+a)TA+F+1) Tkh+A+2+a)l(k+A+3 +1)

FA+2+24+a)T(A+1) Th+A+F+2+a)l(k+A+1) ’
since the gamma function is a zero-free analytic function in the right half-plane,
then

TA+2+)TA+ 2+ D)T(k+A+ 2 +2+a)0(k+A+1)

PA+Z 42+ a)TA+ )T+ A+2+a)T(k+A+2+1)
The left side of the above equation is denoted by Hy(\), and it is evident that
Hi(A) = 1 when k£ = 0. We will prove that Hi(A\) = 1 for all A € Ny if and
only if £k = 0.



COMMUTATIVITY AND HYPONORMALITY OF TOEPLITZ OPERATORS 625

First, we show that if ¥ > 0, then Hy(\) < 1 for any A € Ng. Let a; = A+1,
as=A+2+aand M =k — 1. Then a; < as and

ar(ar +1)---(ar + M)(ag + F)(ag + F +1)--- (a2 + § + M)
(ar+2) a1+ 2 +1)- (a1 + %+ M)ag(az + 1) (ag + M)’
If k = 1, then

Hi(\) =

Hi(\) = ar(az +7%)  aaz+ar’y <1
F (a1 + F)as  araz +ax’y '

Assume Hy(A) < 1 when k = My, then if k = My + 1, we have

Hi(X)
_ai(ar + 1)+ (a1 + Mo)(az + F)(az + 5 + 1) -+ (a2 + 5 + Mo)
T (e 2)(ar+ 2+ 1) (a1 + 2+ Mo)az(ag + 1)+ (a2 + My)

_ al(a1+1) (a1+M071)(0,24’%)(0,24’%4’1)"'(&24’%+Mg 71)
B (CL1+7)(&14‘%4’1)"‘((11+%+Mg71)(12((124’1)"'(@24’]\4071)
(a1 + Mo)(az + 3 + Mo)
(a1 + % + Mo)(ag + Mo)
(a1 + Mo)(az + 3 + Mo)
(a1 + 5 + Mo)(az + Mo)
since a; < ag. Then by induction assumption we complete the above proof.
Similarly we can obtain that if k& < 0, then Hg(A) > 1 for all A € Ny with
A+ k >0. Thus Hi(\) =1 for all A € Ny if and only if k£ = 0.

Hence we get, if k = 0, then the equation (1) holds; if k& # 0, then @ayk(Z)\Jr
k+2) =0 for all A € Ny with A + &k > 0, thus by [18] we get ¢;(r) = 0. So
w(re) = o(r). .
Theorem 2.2. Let 1(re?) = > 72 ™y (r) and ¢(z) = 2527t € L=(D),
where o > =1, Yy, € Zo, s,t € N and s —t # 0. Then T, T, = T,T, if and
only if for every k, there exist constants ag(k), a(k) such that

<1

)

- talk)+2) S T(& —alk)+ 2+ o
s =t T DAL 00 bt
st 25+ak)+s+T)p:5 I'(55 —a(k) +§)
where 6 = s—1t, a(k):%cmdwak fo Yi(r r2)or*=Ldr is the Mellin

transform of the function 1y (r)(1 — r?)e.

Proof. We prefer a polar coordinates representation of our symbols, so let
Y(re?) = Y20 e*y(r) and o(re??) = rme®? where m = s+t > 0,
0 = s—t € Z. Without loss of generality, assume ¢ > 0, for otherwise we could
take the adjoints. Case 6 = 0 leads to Theorem 2.1, so we assume ¢ > 0. If
A € Ny, we have

TA+d+2+a) TO+52+1)
FPA+0+1) TA+224+2+q)

(2) T, =
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and

N (2k+20+2)tT 2
Ty Z 2k +2A+2)" T(k+ A +24 )

i 2 2 k+A
C(k+A+2)T(1+a) Voo (22 + k +2)277,

(3)

k=—o0

where (2A42k+2)F = max{2A+2k+2,0}, ¥a.x(2) = fol Ve (r)(1—r2)r*—Ldr
is the Mellin transform of the function 1y (r)(1 — 72)2.

The equality T,Ty2* = TyT,z for each A € Ny together with (2) and (3)
gives

N T(E+A+0+2+a)T(k+ A+ 252 + 1) (25 +2X + 2 T(k + A+ 2+ a)

k;m D(k+A+6+ DTk + A+ 22 + 24+ a)T(k+ A+ 2)[(1 + @)

X Yo (2A + k 4 2) 2K AT
N T+ +2+ )TN+ 4+ 1)(2k + 20+ 26 +2)FT(k + A+ 6 + 2 + )

:k;m T4+ DA+ 25 4+ 2 4 )T (k+ A +6 4+ 2)T(1+a)

X Yok (2A + 268 + k + 2) 2P0,

The identity of the two power series implies that for each A € Ny such that
k+ X >0,
Do k(2A+20 + k +2)
) — Th+A+2+a)TA+0+ D0k + A+ 252 + DIT(A + S5 + 2 + a)
TN+ ER L2+ )TN+ 2+ DIk + A+ DDA+ +2+a)
X Vo (2A + k + 2)

(This also shows that each Tiirey, () commutes with T},). Since the integer
oEm > max{1,4},

5)

Ya,k(2A+26+ k +2)

2N+ 26+ 6+m) - (2A+ 2k +2)(2A + 5+ m + 2+ 20) -+ (2 + 20 + 4 + 20)
N+ 2k+0+m+2+2a) - (2A+ 2k +4+20)(2A+ 06 +m) -~ (2A+ 26 + 2)

X Yok (2A + k +2).

Let z =2X + k 4+ 2. Then (5) can be written as
©
wa,k(z+25)
(e Ek+o+m—=2)---(2+k)(z—k+d+m+2a)--- (2 —k+20+2+2a)
(z+k+d4+m+2a)---(z+k+2+2a)(z—k+0+m—2)--- (2 — k+29)

X Do (2)
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for positive integers z > |k| + 2. If M > 0 denotes a bound for ¢, then for a
fixed radius rg < 1,
27

R )}

Thus | (ro)] < M, which implies that each 1, is also bounded on [0, 1), since

ro is arbitrary. In [18] we also note that for each k, the function $a7k(z) is
analytic in the right half-plane {z € C : Re z > 2}. Fix k, then

i (2)] < / o () 1= 1|1 = 72)°dr

<M/ l—r “dr
M

< M/o r(1—r?)%dr = Aot D

and |¢a k(z+20) < +1) if x > 2. Therefore in some right half-plane, say
Rez> N, N >0, the function

(z4+k+d+m—2)---(z+k)(z—k+0+m+2a)---(2—k+20+2+2a) ~

Vaok(z +20) = (z+k+d4+m+20)---(z+k+2+20)(z—k+0+m—2)---(z2—k+20)

Yo,k (2)

is bounded and analytic. The equation (6) shows that this function has zeros at
the integers lying in the right half-plane. By [18] we know that a bounded ana-
lytic function in the half-plane cannot have zeros {c;} that form an arithmetic
sequence, because the Blaschke condition

J
is not satisfied. Thus for Re z > 2

Dok (2 + 20)

(24 Ek+d+m—=2)-(z+k)(z—k+d+m+2a) (2 —k+20+ 2+ 2a)
(z+k+04+m+2a)---(z+k+24+2a)(z—k+0+m—2)--- (2 — k+20)
X Yok (2).

Observe that
(z+k+64+m—=2)---(z4+k)(z—k+0+m+2a) - (z—k+20+2+20a)
(z+k+d+m+20) - (z+k+2+2a)(z—k+5+m—2)--- (2 — k +20)

1—04j
1+Oéj

Stm _q Stm
B 21—[ z2+k+2p 21—[ 2—k+2p+2+2a
N z+k+2p+2+4+2a z—k+2p
o5 —1 k o1 k 1+
) 3t ts 2H % tst 5
k 1 k
0 T2 tE+ T o5 3% T 5
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So, for Re z > 2,

{b\a,k(z + 25)
o1 z o1 z a
(7) _ &;a k(z) 21—[ 55 + a(k) + %1 3 5 _Z(l(]f) + % +p1T,
’ poo 3 TaR)+E+ ST 35 —a(k) + 5§

where a(k) = k/24.
Let I'(z) denote the gamma function and let

ro- 11 TG )+

p=0

Using the well-known identity I'(z 4+ 1) = 2I'(z), we can easily obtain that

F(z+206)
8 HTmfl z P 6+2m71 z P 14+«
() :F(Z) H %—Fa(k)—f—g %—a(k)“rg‘i‘T
A ORx

From (7) and (8) we can get

{p\a,k(z + 26) _ {p\a,k(z)

Flz 1 20) = F2) for Rez> 2.

Hence the function ﬂj\ak(z)/F(z) is a periodic function with a period 26 if
Re z > 2. From the asymptotic expression of the logarithm of the gamma
function (see, for example, [24, p. 251]),

logT'(z) = <z - ;) log(z) — z + %log%r +0 <1> ,

z

we see that

z

F(Z) — [6(2—1/2) 10g(z)—z+1/2log2‘n’] <1 +0 <]‘>>

for Re z > 0. Hence

(Hém_l p #_ P 14+

H F(Z+a+g) H F(Z—CL—FE—FT)
(z+a+ &+ 132 T(z—a+2)

p=0 p=4
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s+m

_ 21—[_ M(z+a+2)I(z—a+ L2+ 142) IZI F'(z+a+§)
B s MNz+a+2+ 42 (z—a+1) 0 L(z+a+ 2+ 142
s+m _ g

2

exp{(z—l—a—k%—%)log(z—s—a—ﬁ-%)—(z—i—a—i—%)—}-%log%'
0

=
+(z—a+24+ 2 —Dlog(z—a+2+2H)— (z—a+ 2+ 2H)+ Llog2r
—(z4+a+B+H - Dloglz+a+E+)+(z+a+ 5+ %) — Llog2n
—(z—a+E—13)log(z—a+E )+(Z*a+%)*%10g2ﬂ'}

5-1

xHeXp{z+a+77%)log(z+a+§)f(z+a+§)+%log2ﬂ'

p=0

—(z+a+%—&-O‘TH—%)log(z+a+§+a7+1)+(z+a+§+“7+l)—%logQw}

o)

Note that log(z + a4+ &) = logz + log(1 + (a + £)/z) = logz + O(2), so the
expression above becomes

%_ 5E1n_1 1
Il M(z+a+ %) Il L(z—a+ &+ 1)
1+a _ P
© st I'(z+a+ %+ 5%) s F(z—a+5%)
o1 a+1 at1 ea+1 1
= H@_Tlogz+ 5 {1+0( )} pr <1+O<>)
p=0 z
Thus F(z) = % -(1+0(2)) for Re z > 0 large, and that implies that
(10) 1/};5;’) =0(|z|*"") if Rez> N large.

It is well-known that the gamma function is a zero-free function in the right
half-plane. Thus F'(z) is analytic for Re z large and hence Ja,k(z) JF(2) is
analytic for Re z > N. Because it is periodic, we can extend it to the whole
plane, so @ak(z)/F(z) is an entire function of period 2§. For every z € C,
z = x + 1y, there exists a k, € Z such that

x4+ 2k, —1)0 < N <z +2k,0,
then

|2k.6| < max{|N — z|,|N —x 4+ 2|} <N + |z|+20 < N + |z| + 26.
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For that z, we have
Yok (2) | _ | Gz + 2k-9)
F(z) F(z + 2k.0)
< C(2]z] + N +26)*T! < C(2]2| + N + 26)lo1+2

‘ < Oz + 2k.0)°F1 < O(|2] + [2k.68])°+!

where [a] is the integral part of a. By the fact that if n is a positive integer
and z,y > 0, then (Zf£)" < £ +y , we have, for |z| > N + 26

| Pk (2 + 2k.06)
| F(z 4+ 2k.0)

for some constant Cy. So by [5] w;(’“z()z ) is a polynomial of degree < [a] + 2.

’zZa,ku)

‘ < Clz + 2k,0|%! < Cplz|led+?

Claim 2.3. If f is a polynomial and a periodic function with period to > 0,
then f is a constant.

Proof. Suppose f(z) = ZZ:O apzP. If f is not a constant, then there is a
complex number ¢ such that f(q) = 0. Because f is periodic with period tg,
we have f(q+ ptg) =0 for any p € Z, i.e., {g+ pto : p € Z} are zeros of f. But
the degree of f is n, by the Fundamental Theorem of Algebra we know that f

just has n zeros, which leads to a contradiction. 0
Since d)‘;«“'(kz()Z) is periodic, by Claim 2.3 it must be constant. Therefore
{lz;oz,k(z)
F(Z) = ao(k),
ie.,
(11)
521 z 4+ o1 P atl

J k(2) = ao(k) I(gs +alk) +5) (5 —a(k)+ 5+ 9F)

© B = z .

s D5 +alk) +§+<5) T(% — a(k) + 2)

Since m = s+1t,0 =s—t, then

vak)+B) T TG o) + 5 + 25
20 0 2 ) )
Pl U ET Ry a |

p=4

Hence the necessary is completed. Conversely, if the conditions of Theorem 2.2
are satisfied, then equation (4) holds, and therefor T, commutes with Tp,. O

From the expression of {b\a,k(z), we can see, if a is a decimal, then &a,k(z) is
not a rational function. The reason is that ((a(k)+ B) — (a(k) + B2 + %)) is
not an integer and the terms of I'(55 + a(k) + &) is not equivalent to that of
I'(5—a(k)+2), wherepy =0,1,...,5—1; po =0,1,...,5=1; p3=0,...,5—1.
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If « is an integer, similarly we can get an another expression of iak(z) as
follows:

(12) woc k = a’O

H P(g5 +a(k) + 5(55 +b(k) +§)
o [(zs +elk) + 5l (55 +d(k) + §)’

where a(k) = k/26, b(k) = (m—|— 8 —k)/20, c(k) = (26 — k)/24, d(k) = (m +
§+k)/26, and
(13) a(k) +b(k) — c(k) —d(k) = —1.

Theorem 2.4. Let ¢y (r) be a bounded function on [0,1) for each k € Z, that
satisfies

04\“’:3 Ow\’ti

(14)

Yo (z) = ﬁ i(% +a(k) + 2)D(Z +b(k) + B)

0
where a(k), b(k), c(k) and d(k) are as in equality (12) satisfying the equation
(13); 6 € N. Then o k(2) is a rational function if and only if one of the
following conditions is satisfied:

(1) a+1= Md, where M €N;
(2) For any M € N, a+ 1 # M6, but one of a(k) — c(k), a(k) — d(k),
b(k) — c(k) and b(k) — d(k) is an integer.

In this case, @ak(z) is a proper rational function with the degree of the

denominator by (a4 1) bigger than the degree of the numerator. Moreover,
. a+1
(1) if a(k) = c(k), then ¢¥s(r) has the form ¥s(r) = %rm;
. a+1
(2) if a(k) = c(k) — 1, then 1o(r) has the form o(r) = %.
Proof. Let a = a(k),b = b(k),c = c¢(k) and d = d(k) for simplicity. Suppose
o,k (%) is a rational function, then it has at most finitely many poles. Since
the gamma function has no zeros, the poles of 1, () come from the poles of
I(55+a+%)and T'(55+b+%), wherep =0,1,..., . But the gamma function
has poles at —1,—2,..., then all but finitely many of them must be cancelled
by the poles of I'(55 + ¢+ %) or I'(g5 +d + &), where p=0,1,...,a. Observe
that
k. 20—k k _k+d+m S+m—k _

e R S S AL ¥ %

then a — c and b — d are integers if and only if k/J is an integer. Let § = 5,

then (14) can be written as

ﬁ Fl+c—1+%5+ET(E+b+8)
D+c+2)I(E+b+E+2) 7

SO

(15) &a,k(z) =

p=0

If «+1 = M6, where M € N, because for each p € {0,1, ..., a} there exists
aqe€{0,1,...,a} such that = k P c 7, so 1/1a k(2) is a rational function.
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Ifa+1=Mi+r,where M e N;r=1,2,...,§ —1, by the above discussion
the equation (15) can be written as

Mé+r—1 T

(16) bar(z) = F(2) ]

p=M¢é

(E+cts+HTE+D+E)
DE+c+B)I(E+b+ 542y

where f(z) is a rational function. So 14 5(%) is a rational function if and
. M+r—1 D(tet 2+ 5T (E4045)
only if TT,Zhrs T(¢+or E)T(esbrE+2)
Hrq C(§tet+5+5)M(E+0+5)
P=0 T(§+c+5)T(E+b+5+5%)
Now let us discuss the necessary and sufficient conditions that the function
e C({tet+5+5)0(E+b+%) 5—9
P=0 T(&+ct 5T (E+b+§+%) '
Define a function g : N — N as follows:

g(n) = ro, if (n—7g,0)=0, 1ro=0,1,...,6—1,

is a rational function if and only if

is a rational function.

is a rational function, where ry =0,1,...,

where (a,b) denotes the greatest common divisor of a and b.
Let My ={0,1,...,7} and

Mo — {k,k+1,....k+r}, k>0,
N {N6+Ek,N6+k+1,...,No+k+r}, k<O,

where N € N with Nd + k£ > 0. Before continuing the proof we need the
following two claims.

Claim 2.5. Suppose g1(§) = H;I:o %, where 11 = 0,1,...,0 —2. Then

91(&) is a rational function if and only if b — ¢ is an integer.

Proof. Suppose g1(£) is a rational function. Then for each p; € {0,1,...,7}
there is a po € {0,1,...,7r1} such that (c + &) — (b+ &) € Z, so there exist
ko, k1 € {0,1,...,r1} and Ny, Ny € Z such that

k

(17) b:c+?0+N0,
k

(17) c:b+:$+N¢

By (17) and (17) we get

ko + k1
1)

sowEZ,thenk0+k1:Oork0+k1:5,since0§k0+k1§25—2.

If kg 4+ k1 = 0, then we can obtain that b — ¢ is an integer.
If ko + k1 = 0, by (17) we get

b=1b+

+NO+N17

k
b o= c+§+N0,

1 k 1
b+g = c+ 0+

+N0a
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1 — ko T
R R LN
+ 5 C+6+ 0
By (17') we have
k
c = b+§+N1,
1 ki+1
R N
et + =+ Ny,
Tl—kl T1
——— = b+ —+ N;.
et = + 5+ M

Since 0 < r; < §—2, then there exists a pg with 0 < r1—k14+1 < pg < kg—1 < 1ry
such that b + % =c+ %" + Ny, where Ny € Z. Since b—i—% =
c+ “T'H + No, then ¢+ 5 4+ Ny = c + % + Ny, i.e., ”ﬂ%po € Z. However
0<ri—k1+1<pg<ky—1<r; <J—2, which leads to a contradiction.

It is evident that the converse is also true. [l

. §—1 T(¢+b+2)

Claim 2.6. Suppose g2(§) = [[,—,, I‘(§+7c+§)’ where ro = 0,1,...,0 —1. Then
g2(&) is a rational function if and only if b — c is an integer.

Proof. The proof is similar to Claim 2.5. (]

Now continuing the proof of Theorem 2.4. Without loss of generality, let
0<k<éd—-1.

P(E+cts+5)D(E+b+5 . .
If £ =0, then Hp o r§5+c+ )1“(5)+§;+ T2 ; is a rational function.

L(4ct+E+2)0(E4+b+2) . .
If k # 0 and My g(Mpy) = 0, then Hp 0 T(e+ct? )F(£)+EJ+ Erp ; is a rational
D(E+b+5%) [(§4ct24E)
p=0 T(erer 1) and | J r(g+b+?+k)
D(E4ctk +P)F(§+b+ )
P=0 T(E+c+5)T(E+0+5+5)
a rational function only has ﬁmtely many poles) By Claim 2.5 we have that

ri T(E+b+%)
=0 Merer )

function if and only if J]’! are both rational

functions (otherwise, [].!

has infinitely many poles, but

is a rational function if and only if b — ¢ is an integer, and when
ri D(EtetZEr)
P=0 T(g4+b+2E)
r1 T(E+et5+5)D(E+045) . . SN YIRS ;
Hp:O Tercr DN (Eror E42) 152 rational function if and only if b—c is an integer.
If £ 75 0 and MO ﬂg(MN) 75 (Z), let
_ 0, if m+k<d—1,
@ = glri+k)+1, if ri+k>9,
k— 1, if k < 1,
T, if k> ry,

b — c is an integer, [] is a rational function. So we obtain that

q2 =



634 YUFENG LU AND CHAOMEI LIU

_ r+1, if k<rq,

B = k, if k>,
]i)-f—?“l7 lfk+T1§5—1,
6—1, if k+r >4,

q4

then

H FE+c+E+DT(E+b+2)
o D€ +c+ )(£+b+ﬁ+ﬂ)

FE+c+k)
FE+b+%)

FE+b+%)
FE+c+k)

PQ1

— fl (5) P g3

PQ3 PQI

B FE+c+k) F TE+b+2)
- fl(f)pgsr(§+b+§)pglF(§+c+§)’

where f1(€) is a rational function. Since ¢1 < g2 < g3 < g4 < 0 — 1, then
1 C(§tet+5+5)0(E4+b+%) . L(E4c+%)

p=0 r(g+c+§)r(s+b+§+§) p=q3 T(§+b+%)
p ” % are rational functions. By Claims 2.5 and 2.6 we have that

P
Ziqs % and Z'i « % are both rational functions if and only if
TS

D({+c+E+ 2T (E+b+2) .
p= 0F(€+c+p)F(£+b+ +5)

is a rational function if and only if %

and

b — c is an integer, i.e., [] is a rational function if and

only if b — ¢ is an integer.
Moreover, if a = ¢, i.e., k = ¢, then b = 2% and by (13) we get

20
(2/26+b+%8) (26)2+!
Yoslz HFz/25—|—d+ 1;[ z+2b5+2p)
200t T 1
== P(_1VP— —
(a+1)! LX;)CQ( ) z+2b5+2p]

1 o 1
N / Ys(r)(1 = r?)*r*dr = ZCg(—l)p/ Y (r)r=t# 1,
0 = ;

the uniqueness of the Mellin transform implies 1)s(r) = (25:)1, P2t — %r

Ifa=c—1,ie,k=0,a=0,by (13) b =d and we get

(2/20 +8) 7 (26)°T 250 [N 1
« = —1)?
2 o HF2/2(5+ H (z+2p) oz—i—l)![zco‘( ) z+2p]

m

p=0 p=0
1
/ Yo(r 1—r XpET 1dr—ZC” ”/ wo(r)rz+2p_1dr,
p=0 0
251

the uniqueness of the Mellin transform implies 1g(r) = G
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3. Hyponormality of Toeplitz operators

Now we start to discuss the hyponormality of Toeplitz operators on the
weighted Bergman space A2, where a > —1.

Theorem 3.1. Let o(re?) = % (r) € L=(D), where § € Z, po(r) € Ra.
Then T, is hyponormal if and only if one of the following conditions is satisfied:
(1) 0 <0 and vy = 0;
(2) 0=0;
(3) 6 >0 and for each n > 0,

IF'n—0+2+a)(n+0)!
F'n+d+2+a)(n—0)!

|Pao(2n + 6 +2)] z\/ |Bao(2n — 6+ 2)|.

Proof. For any integer n € Ny, we have

(2n4+26+2)I'(n4+d5+24a) ~ n+é
18) T =1 Crsn e Pao(2n 8+ 22 06 20,
¥ 0, n+d<0

and

(2n—2642)I'(n—56+2+a)
(19) T.2" = (n—0+1)! T'(1+a)

Pao(2n —35+2)2"% n—3>0,
0, n—49<0,

where @ o( fo r*~1(1—7r2?)%dr is the Mellin transform of the function
po(r)(1 - 7"2)
For each f € A2 with f(z) =Y 7 a,2", we get

oo

2n+25+2)+r(n+5+2+a)
T,
ol = Z m+6+DIT(1+a)

0.0(2n + 6 +2)2" 0

and

oo

(2n—20+2)TT'(n—0+2+«)
Tef = Z m=06+DIT(1+a)

Pao0(2n—06+2)z"

where (2n+20+2)" = max{2n+26+2,0}, (2n—25+2)" = max{2n—2§+2,0}.
Note that

(T«:f’T f)

(2n+20+2)T(n+6+2+a)]% . s
—Z\ R e e e

and
(Tof, T f)

> M —25+2)T(n—56+2+a)]? _ T
:ZM"F{( (n—all)!(r(ua) )} [Pao(Zn =8 4+ DI, 2"70).
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Suppose § < 0. By (18) and (19) we have
T,z" = 0,
2n—204+2)'n—0+2+a) .

n __ n—a
Tee" = n=6+DIT(1+a) Pao(Zn—0+2)2

for 0 <n < -6 — 1. If T,, is hyponormal, we get
Pao(2n—642)=0 for0<n<-§-1,

ie.,
Pa,0(p) =0 for any p € My = {2(n+1)5:0§n§51,n€Z},

thus

(To £, Tof) = (Tof. Ts f)

o S[D(n+06+2+a)
= Z d(a+1)|an] [(n+5)! I'(1+a)

n=—4
" In=6+2+0a)
(n—0)I (1 +a) 70
Since 2n+0+2 = 2(n+1+05)—4, we have 2n+0+2 € My and o 0(2n+0+2) =0
for =6 <n < =26 — 1, then by the hyponormality of T, we get

Pao0(2n—904+2)=0 for —6<n<-2§—-1,

|Ba0(2n+ 6 +2)?

(2n — 5 +2)?|.

so we have
Pao(p) =0 forany pe My = {2(n—|—1)—5:0§n§ —25—1,n€Z}.

By the induction we could get P 0(p) = 0, where p € Moo = {2(n+1) -4 :
n € No}, then by Lemma 3.1 in [18] we get po = 0. And it is clear that the
converse holds.

Suppose § = 0, it is evident that (wa, Tg,f) - (T@f7 T¢f) >0.

Suppose § > 0, then

(Tof. Tof) = (Tof. Ty f)

6—1

F'n+0+2+a), .
— 4 1la,|? wo(2n+6+2)?

+ 24(04 + 1)|a,|?

n=4
In-0+2+a)
(n=)T(1+a)

Fn+d+2+a), . 2
|:(n—|—5)[ F(1+a)|@a,0(2n+5+2)|

|ao(2n—0+2)| >0
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if and only if
I'n+d0+2+a)

(n+)'T(1+ «)
>0 forn>4§

'n—0+2+a)
(n=)IT(1+a)

|Pa,0(2n + 6 +2))* — |Bao(2n — 0 +2)|?
if and only if
|Paso(2n+ 6 +2)|

T(n—6+42+a)(n+d)! .
= 2n — 2)| f > 4.
- \/F(n+5+2+a)(n_5)!“pa70( n—04+ )‘ orn >0

O

According to the above theorem we could identify whether a Toeplitz oper-
ator with the symbol as in the theorem is hyponormal. Now we give examples
as follows:

Example 3.2. Let ¢, (re?) = €%y (r) = ei‘seH(wfr)i(l_}&)a and gy (re?) =

9139 wwhere § > 0, w = 2_%& and H is defined as follows:
0, if w<r<l,
Hw-r) = i if r=uw,
1, fo<r<w.

Then T, is not hyponormal and T, is hyponormal.

Proof. 1t is evident that ¢1 € L*°(D) and ¢o(r) = H(w — T)ﬁ So

w2n+5+2

% = < and Guo(2n + 8 +2) = 0 5 (2n — 6+ 2)¢ 0 @n012)
Pa,0(2) = *-, and $a,0(2n + 6 +2) = §575 = Pa0(2n +2) 5

8
In particular, $,,0(26 + 6 + 2) = % = Pa,0(20 =5+ 2)% <
%@a,o(% —§ +2), since the function f(z) = ;7 is strictly mono-

tone increasing on (—u,+00) when v > 0 and 0 < f(x) < 1. Hence we obtain
that T, is not hyponormal.
Similarly it is easy to identify that T.,, is hyponormal. (I

Theorem 3.3. Let p(re??) = 22:700 e*or(r) € L®(D). Then T, is hy-
ponormal if and only if p(re'®) = ¢o(r).

Proof. For any integer n € Ny,

0

Mn+k+2+a) . .
T,2" = ok (2n + k + 2)2" k.
v k;n (n+ k)T + )
0
2'(n — k+ 2
Tpz" = Z (n + +a)g2a’k(2n—k+2)z”*k,

n—kKIT1l+a)

k=—o0
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where 0 1(2) = fol ok (r)r*=1(1—r?)2dr is the Mellin transform of the function
or(r)(1 —r?)*. Thus

(Tp2", Tp2") =4(a+1) X0, ot toed | Ban(2n + b+ 2) 2,

(Tp2", Tpz") =4a+ 1) Tas_ o oot vty Bak(2n — k+2)2.

Now we will show that if T}, is hyponormal, then @ x(2n 4+ 2 — k) = 0 for
any n € Ny, where k = —1,—-2,.. ..

Suppose T, is hyponormal and for simplicity let

An = T (T2, Tpzm) = S0, HEest |5, 5 (2n + k + 2) 2,
« n—k «
By = T (Tpz" Tpz") = Yoo Pt |Ga k(20 — b+ 2)[2

If n =0, we have

A = T2+a)@ao(2)
0
I'C2-k+a), .
By = Z ((_k)!)|90a,k(2k)|2
k=—oc0

-1

— TR+ aRae@P+ Y gz - b

k=—o0

According to Ay > By, we can obtain
(20) Pak(2—k)=0, where k=-1,-2,....
If n =1, we have

0

FB+k+a
A = Z NIRRT HBAEL ) @t b
-1

- r( 0)|a0(@) + T2+ )|Ba, 1 (3)[,
0

Bo= Y - b
— TG+ alEa@P+ 3 S g - P
k=—o0

Then by A; > B; and the equation (20) we can obtain
(21) Pak(d—k)=0, where k=-1,-2,....

Now suppose that the conclusion holds when 0 < n < My, i.e.,

(22) Gar(@Pn+2—-k)=0 for 0<n <My, where k=-1,-2,....
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Then if n = My + 1, we have

ZO: (Mo +3+k+a)

|
ke (Mot 1) (Mp + 1+ k)!

F(Mo +3+ Oz)
(Mo +1)!

-1

T'(My+3+Fk+aq)
+ Z (Mo +1+E)!

|Pak(2Mo + 4 + k)|

Apgt1 =

|Ba,0(2Mo + 4)?

|Pak(2Mo + 4+ k),
k=—(Mo+1)
F(M() + 3+ Oz)
(Mo +1)!

i I(My+3—k+a)

(Mo +1—k)!

Bhy+1 = |Pa0(2Mo + 4)?

|Pa i (2Mo + 4 — k)|,

k=—o0
Observe that for each integer k with —1 < k < —(Mg+ 1), we have (2My+2 —
k)—(2Mo+4+k)=—2k—2>0and 0 <2My+ 2+ 2k < 2Mj (which implies
0 < My+1+k < M), then there exists an integer ny with 0 < nj, < My such
that 2My + 4 + k = 2ny, + 2 — k. Thus we have $n k(2Mo + 4 + k) = 0, where
ke€Zand -1 <k < —(Mp+1). Then by the hypothesis and Apsy+1 > Bay+1
we can get

(23)  Gan(@(Mo+1)+2—k)=0, where k=—1,-2,....

Hence by the induction and the equations (20), (21), (22), and (23) we obtain
that if T, is hyponormal, then for any n € Ny $q1(2n+2 — k) = 0, where
k=—1,-2,...

Fix k. Then by Lemma 3.1 in [18] we get ¢ = 0, where k = —1,-2,..., so
p(re?) = o(r).

It is clear that the converse is true. (]

Example 3.4. By Theorem 3.3 we can easily get that T, is not hyponormal
when ¢(re’?) = e~ ™ swhere §,m € N.

Theorem 3.5. Let p(re?) = Y77 e*ypp(r) € L=®(D) for any {an}32,
with Y %MHP < 4o0. If {or}2 _ o satisfy the following inequality:

Y anPai—p(p+k+2)
k=0

(24)

Y arBaprlp+k+ 2)‘ >
k=0

or any p > 0, then T, is hyponormal.
Jor any v is hy

Proof. For any f € A2 with f =32, arz", we have

(oo}
Tof = ZakTV,zk
k=0
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XL 2n+2k+2)T(n+k+2+0a) . o
2 2)z"
Z‘”’f 2 itk ) T fa)  Pon(Rtnt2)z

n=—k

2 +2 +2+a
z z p Gkt Je - 2) 27
p=0

'Fl—i—a)

[e.°]

Z;)( ?12);(185120( {Zak%p r(p+k+2)|2

and

T@f = ZakT¢Zk
k=0
00 k
B 2n+2)F(k‘—n+2+a)
N Za’“ > ° (k—n+1)!r(1+a) an(2k—n+2)s"

n=—oo

= = (p+2Tp+2+0)
= 2w P+ DT +a)
- (

2p+2)0 -|-2_|_a
- Z(?p—i-l))!lzz(l_Fa [Zaksﬁak (p +k+2)}

(pa k— p(p +k+ 2)
k=0 p=0

p=0
Then
Y a+1DIp+2+a)| = 2
(Tof, Ty f) Z 'r1+) Zawa,p_k(pww)
p k=0
4(a+1)T p+2+a > 2
(Tt T5f) Z , > arPak—pp+k+2)
= pIT(1+a) P
and

(T 1T f) = (T ). Tof)

Z 4a+1DI'(p+2+a)
B p! T(1+ )
p=0

2 2

o0
> akBon—pp+k+2)
k=0

Z ak@a,pfk(p + k+ 2)
k=0

If the inequality (24) is true, then we have
(Tof. Tof) — (Tpf. Tsf) > 0,
that is, T, is hyponormal. O
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