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DEMI-LINEAR ANALYSIS I–BASIC PRINCIPLES

Ronglu Li, Shuhui Zhong, and Linsong Li

Abstract. The family of demi-linear mappings between topological vec-
tor spaces is a meaningful extension of the family of linear operators. We
establish equicontinuity results for demi-linear mappings and develop the
usual theory of distributions and the usual duality theory.

For topological vector spaces X, Y and the family L(X, Y ) of continuous
linear operators, the classical equicontinuity theorem says that if X is of sec-
ond category and Γ is a pointwise bounded subfamily of L(X, Y ), then Γ is
equicontinuous at each x ∈ X so Γ is uniformly bounded on each bounded
B ⊂ X, i.e., {f(x) : f ∈ Γ, x ∈ B} is bounded. This is one of the foundation
stones of functional analysis.

The uniform boundedness result has obtained many improvements [4] and
[7, 8, 9, 10, 11, 12], and every pointwise bounded family of continuous linear
operators from every separated ultrabarrelled (resp., barrelled) space to every
topological vector (resp., locally convex) space is equicontinuous [14, p. 137,
140].

In this paper we would like to improve the equicontinuity theorem and the
uniform boundedness principle by relaxing the linearity requirement forced on
the mappings concerned. In fact, we shall find a meaningful extension of the
family of linear operators and establish equicontinuity results for mappings in
this extension.

Using the new equicontinuity theorem we shall extend the linear duality
theory much wider in scope, and especially, we shall establish a new theory
generalizing the usual distribution theory in forthcoming papers [5] and [3].

Also, our extended versions of the closed graph theorem [15] and the open
mapping theorem [6] will play an important role in the demi-linear analysis.

1. Motivations for demi-linearity

For vector spaces X, Y over the scalar field K, every linear operator T : X →
Y has the exact splitting property:
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T (x + tu) = T (x) + tT (u)

for all x, u ∈ X and t ∈ K. If X is not trivial and ‖ · ‖ : X → R is a norm and
‖ · ‖ 6= 0, then ‖ · ‖ is not linear but ‖ · ‖ also has some splitting property: if
x, u ∈ X and t ∈ K, then

‖x + tu‖ = ‖x‖+ s‖u‖
for some s ∈ [−|t|, |t|]. Moreover, many nonlinear functions in RR have some
local splitting property, e.g., if

f ∈ {
sin x, ex − 1, x/

√
1 + |x|},

then for every x ∈ R and u, t ∈ [−1, 1], there exist r, s ∈ R such that
|r − 1| ≤ 10|t|, |s| ≤ 10|t| and

f(x + tu) = rf(x) + sf(u).

Definition 1.1. Let C ≥ 1 and δ > 0. Then
(1) We denote by LC,δ(R,R) the family of functions f satisfying

(i) f : R→ R;
(ii) f(0) = 0;
(iii) for all x, u, t ∈ R, |u| ≤ δ, |t| ≤ 1 there exist r, s ∈ R satisfying

|r − 1| ≤ C|t|, |s| ≤ C|t| and

f(x + tu) = rf(x) + sf(u).

(2) We denote by KC,δ(R,R) the family of functions f satisfying
(i) f : R→ R;
(ii) f(0) = 0;
(iii) for all x, u, t ∈ R, |u| ≤ δ, |t| ≤ 1 there exists s ∈ R satisfying

|s| ≤ C|t| and

f(x + tu) = f(x) + sf(u).

It is trivial that

the family of linear functions ⊂ KC,δ(R,R) ⊂ LC,δ(R,R)

for all C ≥ 1, δ > 0.

Lemma 1.1. Every f ∈ LC,δ(R,R) is continuous.

Proof. If xn → x in R, then we obtain for sufficiently large n ∈ N that |xn −
x|/δ < 1 and

f(xn) = f

(
x +

xn − x

δ
δ

)
= rnf(x) + snf(δ),

where |rn − 1| ≤ C|xn − x|/δ and |sn| ≤ C|xn − x|/δ. Thus f(xn) → f(x). ¤

Lemma 1.2. If f ∈ LC,δ(R,R), f 6= 0, then f(u) 6= 0 for every 0 < |u| ≤ δ.
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Proof. Suppose 0 < |u| ≤ δ and f(u) = 0. For nonzero x ∈ R we pick n ∈ N
for which |x/(nu)| ≤ 1, then

f(x) = f
(
n

x

nu
u
)

= f
[
(n− 1)

x

nu
u +

x

nu
u
]

= r1f
[
(n− 1)

x

nu
u
]

+ s1f(u) = r1f
[
(n− 2)

x

nu
u +

x

nu
u
]

= r1r2f
[
(n− 2)

x

nu
u
]

= · · ·

= r1r2 · · · rn−1f
( x

nu
u
)

= r1r2 · · · rn−1f
(
0 +

x

nu
u
)

= r1r2 · · · rn−1rnf(0) + r1r2 · · · rn−1snf(u) = 0,

where |ri − 1| ≤ C|x/(nu)|, |si| ≤ C|x/(nu)|, i = 1, 2, . . . , n. Thus, f(x) = 0
for every x ∈ R. ¤

Theorem 1.1. Let f : R→ R be a function such that f(0) = 0 and f ′(x0) 6= 0
for some x0 ∈ R. Also, let δ > 0. Then f ∈ KC,δ(R,R) for some C ≥ 1 if and
only if

(1) f is continuous,
(2) f(u) 6= 0 for every 0 < |u| ≤ δ,
(3) inf0<|u|≤δ

∣∣f(u)/u
∣∣ > 0,

(4) supx,u∈R, 0<|u|≤δ

∣∣(f(x + u)− f(x))/u
∣∣ < +∞.

Proof. Suppose that f ∈ KC,δ(R,R), where C ≥ 1. By Lemmas 1.1 and
1.2, (1) and (2) hold for f . If inf0<|u|≤δ

∣∣f(u)/u
∣∣ = 0, then there exists a

sequence {un} ⊂ [−δ, δ] \ {0} such that f(un)/un → 0. We may assume that
un → u0 ∈ [−δ, δ ]. If u0 6= 0, then f(un)/un → f(u0)/u0 6= 0 by (1) and (2).
So u0 = 0 and un → 0.

Since f ∈ KC,δ(R,R) for all n ∈ N f(x0 + un) = f(x0) + snf(un), where
|sn| ≤ C|1| = C. It follows from (2) that

f(x0 + un) = f(x0) + f(x0 + un)− f(x0)

= f(x0) +
[f(x0 + un)− f(x0)]/un

f(un)/un
f(un),

but
f(x0 + un)− f(x0)

un
→ f ′(x0) 6= 0

and f(un)/un → 0, so

sn =
[f(x0 + un)− f(x0)]/un

f(un)/un
→∞.

This is a contradiction and so (3) holds for f .
Let x, u ∈ R, 0 < |u| ≤ δ. Since f(u) = f

(
u
δ δ

)
= sf(δ), where |s| ≤

C|u/δ| = (C/δ)|u| and f(x + u) = f(x) + s1f(u), where |s1| ≤ C|1| = C,
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|f(u)| ≤ (C/δ)|f(δ)u| and
∣∣∣f(x + u)− f(x)

u

∣∣∣ =
∣∣∣s1f(u)

u

∣∣∣ ≤ C2

δ
|f(δ)|.

Thus, (4) holds for f .
Conversely, suppose (1), (2), (3), and (4) hold for f . Since f(0) = 0 and

inf0<|u|≤δ |f(u)/u| = inf0<|u|≤δ |(f(0 + u)− f(0))/u|,

C =
[

sup
x,u∈R, 0<|u|≤δ

∣∣∣f(x + u)− f(x)
u

∣∣∣/ inf
0<|u|≤δ

∣∣∣f(u)
u

∣∣∣
]
≥ 1.

Then for x, u, t ∈ R, 0 < |u| ≤ δ, 0 < |t| ≤ 1, f(u) 6= 0 by (2) and

f(x + tu) = f(x) + f(x + tu)− f(x) = f(x) +
[f(x + tu)− f(x)

tu

u

f(u)
t
]
f(u),

where
∣∣∣f(x + tu)− f(x)

tu

u

f(u)
t
∣∣∣ =

∣∣∣f(x + tu)− f(x)
tu

/
f(u)

u

∣∣∣
∣∣t

∣∣ ≤ C
∣∣t

∣∣.

Thus, f ∈ KC,δ(R,R). ¤

Corollary 1.1. Let f : R→ R be differentiable, f ′(0) 6= 0 and supx∈R |f ′(x)| <
+∞. Then f − f(0) ∈ KC,δ(R,R) for some C ≥ 1 and δ > 0.

If 0 < supx∈R |f(x)| < +∞, then f : R→ R is nonlinear. For example, sin x,
arctanx, tanh x and

f(x) =





−√2, x < −√2,

x, −√2 ≤ x ≤ √
2 ,√

2, x >
√

2,

etc.

Corollary 1.2. For every C ≥ 1 and δ > 0, the set
{

f ∈ KC,δ(R,R) : 0 < sup
x∈R

|f(x)| < +∞
}

is uncountable and so KC,δ(R,R) includes uncountably many of nonlinear func-
tions. In fact, for every C ≥ 1 and δ > 0 the cardinal number

∣∣{f ∈ KC,δ(R,R) : f is nonlinear}∣∣ ≥ |R| = ∣∣{f : R→ R | f is linear}∣∣.
Corollary 1.3. For every C0 > 1

LC0,1(R,R) \ [ ⋃

C≥1,δ>0

KC,δ(R,R)
] 6= ∅.
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Proof. Let C0 > 1. Pick α ∈ (0, 1) for which e2α ≤ C0 and define f : R → R
by f(x) = eαx − 1, x ∈ R. Since limx→+∞ f ′(x) = limx→+∞ αeαx = +∞,
Theorem 1.1 shows that f 6∈ KC,δ(R,R) for all C ≥ 1, δ > 0. For x, u, t ∈
R, 0 < |u| ≤ 1, 0 < |t| ≤ 1,

f(x + tu) = eα(x+tu) − 1 = eα(x+tu) − eαtu + eαtu − 1

= eαtu(eαx − 1) +
eαtu − 1
eαu − 1

(eαu − 1) = eαtuf(x) +
eαtu − 1
eαu − 1

f(u)

and

|eαtu − 1| = |eθαtuαtu| ≤ eα|t| < C0|t|,
∣∣∣e

αtu − 1
eαu − 1

∣∣∣ =
∣∣∣e

θαtuαtu

eηαuαu

∣∣∣ = e(θt−η)αu|t| ≤ e2α|t| ≤ C0|t|,
where θ, η ∈ (0, 1). Thus, f ∈ LC0,1(R,R). ¤

2. Demi-linear and weakly demi-linear mappings

Let X be a topological vector space and N (X) the family of neighborhoods
of 0 ∈ X. Then we denote by C(0) the set of complex valued functions γ
satisfying

(1) γ : C→ C;
(2) limt→0 γ(t) = γ(0) = 0;
(3) |γ(t)| ≥ |t| if |t| ≤ 1.

Definition 2.1. A mapping f : X → Y is said to be demi-linear if f(0) = 0
and there exist γ ∈ C(0) and U ∈ N (X) such that every x ∈ X, u ∈ U and
t ∈ {t ∈ K : |t| ≤ 1} yield r, s ∈ K for which |r − 1| ≤ |γ(t)|, |s| ≤ |γ(t)| and
f(x + tu) = rf(x) + sf(u).

We denote by Lγ,U (X, Y ) the demi-linear mappings related to γ ∈ C(0)
and U ∈ N (X), and by Kγ,U (X, Y ) the subfamily of Lγ,U (X,Y ) satisfying
the following property: if x ∈ X, u ∈ U and |t| ≤ 1, then

f(x + tu) = f(x) + sf(u)

for some s with |s| ≤ |γ(t)|.
If γ(t) = Ct with C ≥ 1, then we write that Lγ,U (X, Y ) = LC,U (X, Y ) and

Kγ,U (X, Y ) = KC,U (X, Y ). Moreover, if X is normed and

U = Bδ = {x ∈ X : ‖x‖ ≤ δ},
then Lγ,δ(X, Y ) = Lγ,U (X, Y ) and Kγ,δ(X,Y ) = Kγ,U (X, Y ). Thus, both
LC,δ(R,R) and KC,δ(R,R) are families of demi-linear functions in RR.

Theorem 2.1. Let X be a nontrivial normed space and Y a nontrivial vector
space. For every C > 1, δ > 0 and U = {u ∈ X : ‖u‖ ≤ δ} the family of
nonlinear mappings in LC,δ(X,Y ) is uncountable. Especially, every nonzero
linear operator T : X → Y produces uncountably many of nonlinear mappings
in LC,δ(X, Y ).
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Proof. Pick η ∈ KC,δ(R,R) for which 0 < K0 = supt∈R |η(t)| < +∞. Since
limt→+∞

t+(1+C)K0
t−K0

= 1 < C, there exists K1 > 2K0 such that

K0

K −K0
< 1,

K + (1 + C)K0

K −K0
< C

for every K ≥ K1. For a nonzero linear operator T : X → Y and K ≥ K1

define fT,K : X → Y by

fT,K(x) = [K + η(‖x‖)]T (x), x ∈ X.

Let x, u ∈ X, 0 < ‖u‖ ≤ δ and 0 < |t| ≤ 1. Since ‖x + tu‖ = ‖x‖+ s‖u‖ for
some s ∈ [−|t|, |t| ] and η ∈ KC,δ(R,R), there exists α with |α| ≤ C|s| ≤ C|t|
such that

fT,K(x + tu)

= [K + η(‖x + tu‖)]T (x + tu)

= [K + η(‖x‖+ s‖u‖)]T (x + tu)

= [K + η(‖x‖) + αη(‖u‖)][T (x) + tT (u)]

=
K + η(‖x‖) + αη(‖u‖)

K + η(‖x‖) fT,K(x) +
K + η(‖x‖) + αη(‖u‖)

K + η(‖u‖) tfT,K(u),

where
∣∣∣K + η(‖x‖) + αη(‖u‖)

K + η(‖x‖) − 1
∣∣∣ =

|αη(‖u‖)|
K + η(‖x‖) ≤

K0C|t|
K −K0

< C|t|,
∣∣∣K + η(‖x‖) + αη(‖u‖)

K + η(‖u‖) t
∣∣∣ ≤ K + K0 + C|t|K0

K −K0
|t| ≤ K + (1 + C)K0

K −K0
|t| < C|t|.

Thus, fT,K ∈ LC,δ(X,Y ).
By Corollary 1.2, KC,δ(R,R) includes uncountably many of nonlinear map-

pings which can be used to construct demi-linear mappings as above fT,K . ¤

Definition 2.2. Let X be a topological vector space and Y a locally convex
space with dual Y ′. A mapping f : X → Y is said to be weakly demi-linear if
f(0) = 0 and there exist γ ∈ C(0) and U ∈ N (X) such that y′◦f ∈ Lγ,U (X,C)
for each y′ ∈ Y ′.

Let Wγ,U (X, Y ) =
{
f ∈ Y X : f(0) = 0 and y′ ◦ f ∈ Lγ,U (X,C) for all

y′ ∈ Y ′}. We write Wγ,U (X,Y ) = WC,U (X,Y ) when γ(t) = Ct. Obvi-
ously, Lγ,U (X, Y ) ⊂ Wγ,U (X, Y ) but Lγ,U (X, Y ) can be a proper subfamily of
Wγ,U (X,Y ).

Example 2.1. For (a, b) ∈ R2 let ‖(a, b)‖ = |2a + b|. Then ‖ · ‖ is a semi-
norm on R2 and the seminormed space (R2, ‖ · ‖) is locally convex. Let
ξ : (R2, ‖ · ‖) → R be a continuous linear functional. Then ξ = (α, β) ∈ R2,
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ξ(a, b) = 〈(α, β), (a, b)〉 = αa + βb for all (a, b) ∈ R2. Since
∥∥∥∥(n +

1
n

,−2n)
∥∥∥∥ =

∣∣∣∣2n +
2
n
− 2n

∣∣∣∣ =
2
n
→ 0,

ξ

(
n +

1
n

,−2n

)
=

〈
(α, β),

(
n +

1
n

,−2n

)〉

= αn +
α

n
− 2βn = (α− 2β)n +

α

n
→ 0

and so α = 2β, (α, β) = (2β, β).
Conversely, if ‖(an, bn)− (a, b)‖ → 0, then 2an + bn → 2a + b and, for every

β ∈ R,

〈(2β, β), (an, bn)〉 = 2βan + βbn = β(2an + bn) → β(2a + b) = 〈(2β, β), (a, b)〉,
so (2β, β) ∈ (R2, ‖ · ‖)′ for all β ∈ R, i.e., (R, ‖ · ‖)′ = {(2β, β) : β ∈ R}.

Let

η(x) =





1, x > 1,

x, −1 ≤ x ≤ 1,

−1, x < −1,

and define f : R → R2 by f(x) = (x, η(x)) for all x ∈ R. For 0 < δ < 1 pick
u ∈ (0, δ) and x, t ∈ (0, 1) for which x + tu > 1, e.g., x = 1− δ/5, u = δ/2, t =
1/2. Then η(x + tu) = 1 and f(x + tu) = (x + tu, 1). If there exist r, s ∈ R
such that f(x + tu) = rf(x) + sf(u), i.e.,

(x + tu, 1) = r(x, x) + s(u, u) = (rx + su, rx + su),

then rx+su = x+tu > 1 = rx+su. This contradiction shows that f : R→ R2

is not demi-linear: f 6∈ LC,[−δ,δ](R,R2) for all C ≥ 1, δ > 0.
However, f ∈ W1,[−1,1](R, (R2, ‖ · ‖)). To see this, let (2β, β) ∈ (R2,

‖ · ‖)′, β 6= 0. By Theorem 1.1, η ∈ K1,[−1,1](R,R) and so for every x ∈ R and
t, u ∈ [−1, 1]\{0} there exists s ∈ [−|t|, |t|] such that η(x+tu) = η(x)+sη(u) =
η(x) + su and

〈(2β, β), f(x + tu)〉 = 〈(2β, β), (x + tu, η(x) + su)〉
= 〈(2β, β), (x, η(x))〉+ 〈(2β, β), (tu, su)〉
= 〈(2β, β), f(x)〉+ 2βtu + βsu

= 〈(2β, β), f(x)〉+
2βtu + βsu

2βu + βu
〈(2β, β), (u, u)〉

= 〈(2β, β), f(x)〉+
2t + s

3
〈(2β, β), f(u)〉,

where |2t + s|/3 ≤ (2|t| + |s|)/3 ≤ |t|. Thus, 〈(2β, β), f(·)〉 ∈ L1,[−1,1](R,R)
and so f ∈ W1,[−1,1]

(
R, (R2, ‖ · ‖)).
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3. Equicontinuity

For topological vector spaces X, Y , a family Γ ⊂ Y X is said to be equicon-
tinuous at x ∈ X if for every V ∈ N (Y ) there exists U ∈ N (X) such that
f(x+U) ⊂ f(x)+V for all f ∈ Γ. If Γ is equicontinuous at each x ∈ X, then Γ
is said to be equicontinuous on X. We refer to [1] and [13, p. 129] for standard
definitions and results.

Henceforth, X and Y are topological vector spaces. In the notations Lγ,U (X,
Y ) and Wγ,U (X,Y ), γ ∈ C(0) and U ∈ N (X) is both closed and balanced.
Γ ⊂ Y X is said to be pointwise bounded if {f(x) : f ∈ Γ} is bounded at each
x ∈ X.

Theorem 3.1. If X is of second category and Γ ⊂ Lγ,U (X,Y ) is a pointwise
bounded family of continuous mappings, then Γ is equicontinuous on X.

Proof. Let V ∈ N (Y ). Pick a closed balanced set W ∈ N (Y ) satisfying W +
W ⊂ V , and let

W0 =
1

1 + |γ(−1)|W, M = U ∩
( ⋂

f∈Γ

f−1(W0)
)
.

Since each f ∈ Γ is continuous and both U and W0 are closed, M is closed and
0 ∈ M .

Let x ∈ X. Pick α ∈ (0, 1) so that αx ∈ U . Since {f(αx) : f ∈ Γ} is
bounded, there exists ε ∈ (0, 1) such that sf(αx) ∈ W0 for all f ∈ Γ, |s| ≤ ε.
Observing limt→0 γ(t) = 0, pick δ ∈ (0, 1) such that |γ(t)| < ε when |t| ≤ δ.
If f ∈ Γ and |t| ≤ δ, then f(tαx) = sf(αx) with |s| ≤ |γ(t)| < ε and so
f(tαx) ∈ W0. Thus, tαx ∈ ⋂

f∈Γ f−1(W0) for every |t| ≤ δ. Since U is
balanced, it follows that tαx ∈ U when |t| ≤ δ and

tαx ∈ U ∩
( ⋂

f∈Γ

f−1(W0)
)

= M

for every |t| ≤ δ. Then for 1/n < αδ, (1/n)x = (1/αn)αx ∈ M , so x ∈ nM .
Thus, X =

⋃∞
n=1 nM and M has nonempty interior by the Baire category

theorem. Hence,

M −M = {x− z : x, z ∈ M} ∈ N (X).

Let x, z ∈ M and f ∈ Γ. Then

f(x), f(z) ∈ W0 =
1

1 + |γ(−1)|W

and so

f(x) =
1

1 + |γ(−1)|y1, f(z) =
1

1 + |γ(−1)|y2,

where y1, y2 ∈ W . Since z ∈ M ⊂ U , f(x − z) = rf(x) + sf(z), where
|r − 1| ≤ |γ(−1)|, |s| ≤ |γ(−1)|. But W is balanced and |r| ≤ 1 + |γ(−1)|, it
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follows that

f(x− z) = rf(x) + sf(z) =
r

1 + |γ(−1)|y1 +
s

1 + |γ(−1)|y2 ∈ W + W ⊂ V.

Thus, M−M ∈ N (X) and f(M−M) ⊂ V for all f ∈ Γ, i.e., Γ is equicontinuous
at 0 ∈ X.

Let x ∈ X and V ∈ N (Y ). Pick a balanced set W ∈ N (Y ) so that W +W ⊂
V . Since Γ is equicontinuous at 0 ∈ X, there exists U0 ∈ N (X) satisfying
f(U0) ⊂ W for all f ∈ Γ. But {f(x) : f ∈ Γ} is bounded so there exists
ε ∈ (0, 1) for which tf(x) ∈ W for every f ∈ Γ, |t| ≤ ε. Pick δ ∈ (0, 1) so that
|γ(t)| < ε when |t| ≤ δ. Then for f ∈ Γ and z = (δ/2)z0 ∈ (δ/2)(U0 ∩ U) we
have

f(x + z) = f

(
x +

δ

2
z0

)
= rf(x) + sf(z0) = f(x) + (r − 1)f(x) + sf(z0),

where |r − 1| ≤ |γ( δ
2 )| < ε and |s| ≤ |γ( δ

2 )| < ε < 1. Therefore, it follows
that

(r − 1)f(x) ∈ W, sf(z0) ∈ sf(U0) ⊂ sW ⊂ W

and

f(x + z) = f(x) + (r − 1)f(x) + sf(z0) ∈ f(x) + W + W ⊂ f(x) + V.

Thus we obtain

δ

2
(U0 ∩ U) ∈ N (X), f

[
x +

δ

2
(U0 ∩ U)

]
⊂ f(x) + V

for all f ∈ Γ. This shows that Γ is equicontinuous at each x ∈ X. ¤

Corollary 3.1. Suppose that X is of second category and Γ ⊂ Lγ,U (X,Y ) is
a pointwise bounded family of continuous mappings. If (xα)α∈I is a net in X
such that xα → x, then limα f(xα) = f(x) uniformly for f ∈ Γ.

Proof. Let V ∈ N (Y ). Then, by Theorem 3.1, there exists W ∈ N (X) for
which f(x+W ) ⊂ f(x)+V for every f ∈ Γ. Since xα → x, there exists α0 ∈ I
such that xα − x ∈ W for all α ≥ α0. Then

f(xα)− f(x) = f(x + xα − x)− f(x) ∈ f(x + W )− f(x) ⊂ V

for all α ≥ α0, f ∈ Γ. ¤

Theorem 3.2. If X is of second category and {fn} ⊂ Lγ,U (X, Y ) is a sequence
of continuous mappings such that limn fn(x) = f(x) exists at each x ∈ X, then
f ∈ Lγ,U (X,Y ) and f is also continuous.

Proof. Let x ∈ X, u ∈ U and |t| ≤ 1. Then

f(x + tu) = lim
n

fn(x + tu) = lim
n

[rnfn(x) + snfn(u)],
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where |rn − 1| ≤ |γ(t)| and |sn| ≤ |γ(t)|. There exists an integer sequence
n1 < n2 < · · · such that rnk

→ r, snk
→ s and

|r − 1| = lim
k
|rnk

− 1| ≤ |γ(t)|, |s| = lim
k
|snk

| ≤ |γ(t)|.
Moreover,

f(x + tu) = lim
k

fnk
(x + tu) = lim

k
[rnk

fnk
(x) + snk

fnk
(u)] = rf(x) + sf(u).

Thus, f ∈ Lγ,U (X,Y ).
Since limn fn(x) = f(x) exists at each x ∈ X, {fn : n ∈ N} is pointwise

bounded. If xα → x in X, then Corollary 3.1 shows that

lim
α

f(xα) = lim
α

lim
n

fn(xα) = lim
n

lim
α

fn(xα) = lim
n

fn(x) = f(x).

Thus, f is continuous. ¤
The most important consequence of Theorem 3.1 is the following substantial

improvement of the classical uniform boundedness principle.

Theorem 3.3. If X is of second category and Γ ⊂ Lγ,U (X,Y ) is a pointwise
bounded family of continuous mappings, then Γ is uniformly bounded on each
bounded subset of X, i.e.,

{
f(x) : f ∈ Γ, x ∈ B

}
is bounded for every bounded

B ⊂ X.

Proof. Suppose that B ⊂ X is bounded and V ∈ N (Y ) is balanced. By
Theorem 3.1, there is a balanced set U0 ∈ N (X) such that U0 ⊂ U and
f(U0) ⊂ V for all f ∈ Γ. Pick n0 ∈ N for which 1

n0
B ⊂ U0. Observe that V

decides U0, both U0 and B decide n0 so n0 is independent of every individual
x ∈ B.

If x ∈ B and f ∈ Γ, then x = n0
x
n0

, x
n0

∈ U0 ⊂ U and so

f(x) = f

(
n0

x

n0

)

= f

[
(n0 − 1)

x

n0
+

x

n0

]

= r1f

[
(n0 − 1)

x

n0

]
+ s1f

(
x

n0

)

= r1r2f

[
(n0 − 2)

x

n0

]
+ r1s2f

(
x

n0

)
+ s1f

(
x

n0

)

· · · · · ·

= (r1 · · · rn0−1 + r1 · · · rn0−2sn0−1 + · · ·+ r1s2 + s1) f

(
x

n0

)
,

where |ri−1| ≤ |γ(1)|, |si| ≤ |γ(1)|, i = 1, 2, . . . , n0−1. Let αx = r1 · · · rn0−1+
r1 · · · rn0−2sn0−1 + · · ·+ r1s2 + s1. Then |αx| ≤ n0(1 + |γ(1)|)n0−1 and

tf(x) = tαxf

(
x

n0

)
∈ tαxf(U0) ⊂ tαxV ⊂ V
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for every |t| ≤ 1/[n0(1 + |γ(1)|)n0−1]. Thus,

t{f(x) : f ∈ Γ, x ∈ B} ⊂ V

for every |t| ≤ 1/[n0(1 + |γ(1)|)n0−1]. ¤

A mapping f : X → Y is said to be bounded if f(B) is bounded for each
bounded B ⊂ X. Even bounded linear functionals on a locally convex space
need not be continuous. However, if X is metrizable, then a linear operator
f : X → Y is continuous if and only if f is bounded.

Lemma 3.1. Let f ∈ Lγ,U (X, Y ) is continuous. Then f is bounded.

Proof. Suppose that B ⊂ X is bounded and V ∈ N (Y ) is balanced. Pick a
balanced set U0 ∈ N (X) such that U0 ⊂ U and f(U0) ⊂ V . As in the proof of
Theorem 3.3, 1

n0
B ⊂ U0 for some n0 ∈ N and

tf(B) ⊂ V for every |t| ≤ 1/[n0(1 + |γ(1)|)n0−1]. ¤

Lemma 3.2. Let X be metrizable and f ∈ Lγ,U (X,Y ). Then f is continuous
if and only if f is bounded.

Proof. Suppose that f is bounded and xn → x in X. Since X is metrizable
and xn−x → 0, there exist {un} ⊂ X and {tn} ⊂ C such that un → 0, tn → 0
and {xn − x} = {tnun} [2, p. 380]. Pick n0 ∈ N for which un ∈ U and |tn| < 1
whenever n > n0.

Since {un} is bounded and

f(xn)− f(x) = f(x + xn − x)− f(x) = f(x + tnun)− f(x)

= rnf(x) + snf(un)− f(x) = (rn − 1)f(x) + snf(un),

where |rn − 1| ≤ |γ(tn)| and |sn| ≤ |γ(tn)| for all n > n0, {f(un)} is bounded
and rn → 1, sn → 0 so f(xn) → f(x). ¤

Now Theorem 3.3 gives a substantial improvement of the classical resonance
theorem as follows.

Theorem 3.4. Suppose X is of second category and metrizable. If Γ ⊂
Lγ,U (X,Y ) is a pointwise bounded family of bounded mappings, then Γ is uni-
formly bounded on each bounded set in X.

4. Further improvements

Let Y be a locally convex space with the dual Y ′. If f ∈ Wγ,U (X, Y ), i.e.,
f(0) = 0 and y′ ◦ f ∈ Lγ,U (X,C) for each y′ ∈ Y ′, then for every x ∈ X, u ∈
U, |t| ≤ 1 and y′ ∈ Y ′ there exist scalars ry′ and sy′ such that

|ry′ − 1| ≤ |γ(t)|, |sy′ | ≤ |γ(t)|
and

y′(f(x + tu)) = ry′y
′(f(x)) + sy′y

′(f(u)).



654 RONGLU LI, SHUHUI ZHONG, AND LINSONG LI

If f : X → Y is continuous, then y′ ◦ f : X → C is continuous for each
y′ ∈ Y ′. The converse is not true, e.g., if f : (c0, weak) → (c0, ‖ · ‖∞), f(x) = x
for x ∈ c0, then x′ ◦ f : (c0, weak) → C is continuous for each x′ ∈ c′0 but
f : (c0, weak) → (c0, ‖ · ‖∞) is not continuous.

Recall that Lγ,U (X,Y ) $ Wγ,U (X, Y ), in general (see Example 2.1).

Theorem 4.1. Suppose that X is of second category and Y is a locally convex
space with the dual Y ′. If Γ ⊂ Wγ,U (X,Y ) is pointwise bounded and y′ ◦ f :
X → C is continuous whenever y′ ∈ Y ′ and f ∈ Γ, then Γ is equicontinuous
on X and, in particular, each f ∈ Γ is continuous.

Proof. For every W ∈ N (Y ) there is a barrel V ∈ N (Y ) for which V ⊂ W [14,
p. 92]. Moreover, for each W ∈ N (Y ) the polar

W ◦ =
{
y′ ∈ Y ′ : |y′(y)| ≤ 1 for all y ∈ W

}

is equicontinuous on Y [14, p. 129].
Let W ∈ N (Y ). Pick a barrel V ∈ N (Y ) for which V ⊂ W . If x ∈ X for

which supf∈Γ,y′∈V ◦ |y′(f(x))| = +∞, then there exist {fn} ⊂ Γ and {y′n} ⊂
V ◦ such that |y′n(fn(x))| > n and so |y′n( 1

n fn(x))| > 1 for all n ∈ N. But
{f(x) : f ∈ Γ} is bounded so 1

n fn(x) → 0, and since V ◦ is equicontinuous
on Y , it follows that limn y′( 1

n fn(x)) = 0 uniformly for y′ ∈ V ◦. This is a
contradiction and so {y′(f(x)) : y′ ∈ V ◦, f ∈ Γ} is bounded at each x ∈ X.
Since {

y′ ◦ f : y′ ∈ V ◦, f ∈ Γ
} ⊂ Lγ,U (X,C)

and each y′◦f is continuous by the hypothesis, Theorem 3.1 shows that
{
y′◦f :

y′ ∈ V ◦, f ∈ Γ
}

is equicontinuous on X.
Let x0 ∈ X. There exists U0 ∈ N (X) such that∣∣y′[f(x0 + u)− f(x0)]

∣∣ =
∣∣y′(f(x0 + u))− y′(f(x0))

∣∣ < 1

for every y′ ∈ V ◦, f ∈ Γ and u ∈ U0. But, V is a barrel, so V ◦◦ = V by the
bipolar theorem [14, p. 112]. Therefore, we have

f(x0 + u)− f(x0) ∈ V ◦◦ = V ⊂ W

for every f ∈ Γ, u ∈ U0. This shows that Γ is equicontinuous at every x0 ∈
X. ¤

Corollary 4.1. Suppose that X is of second category and Y is a locally convex
space with the dual Y ′. Then f ∈ Wγ,U (X, Y ) is continuous if and only if
y′ ◦ f : X → C is continuous for each y′ ∈ Y ′.

Proof. Γ = {f} is pointwise bounded. Theorem 4.1. ¤

Theorem 4.2. Suppose that X is of second category and Y is a locally convex
space with the dual Y ′. If Γ ⊂ Wγ,U (X,Y ) is pointwise bounded and y′ ◦ f :
X → C is continuous whenever y′ ∈ Y ′ and f ∈ Γ, then Γ is uniformly bounded
on each bounded subset of X.
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Proof. Let y′ ∈ Y ′. Then {y′ ◦f : f ∈ Γ} ⊂ Lγ,U (X,C) and
{
y′(f(x)) : f ∈ Γ

}
is bounded at each x ∈ X. If B ⊂ X is bounded, then

{
y′(f(x)) : f ∈ Γ, x ∈

B
}

is bounded by Theorem 3.3. Since y′ ∈ Y ′ is arbitrary, it follows that{
f(x) : f ∈ Γ, x ∈ B

}
is bounded in (Y, weak). Therefore, by the Mackey

theorem [14, p. 114],
{
f(x) : f ∈ Γ, x ∈ B

}
is bounded. ¤

Theorem 4.3. Suppose that X is of second category and metrizable. If Y is a
locally convex space with the dual Y ′ and Γ ⊂ Wγ,U (X, Y ) is pointwise bounded
and y′ ◦ f : X → C is bounded whenever y′ ∈ Y ′ and f ∈ Γ, i.e., for every
bounded set B ⊂ X, supx∈B |y′(f(x))| < +∞ for all y′ ∈ Y ′, f ∈ Γ, then Γ is
uniformly bounded on each bounded subset of X.

Proof. Let y′ ∈ Y ′. Since y′ ◦ f ∈ Lγ,U (X,C) is bounded whenever f ∈ Γ,
each y′ ◦ f : X → C is continuous by Lemma 3.2. Then the desired follows
from Theorem 4.2. ¤

Theorem 4.4. Suppose that X is of second category and Y is a locally convex
space with the dual Y ′. Let {fn} ⊂ Wγ,U (X,Y ) such that each y′ ◦ fn : X → C
is continuous for all y′ ∈ Y ′, n ∈ N. If limn fn(x) = f(x) exists at each x ∈ X,
then f ∈ Wγ,U (X, Y ) and f is continuous.

Proof. Let y′ ∈ Y ′. Since {y′ ◦ fn} ⊂ Lγ,U (X,C) is a sequence of continuous
functions such that limn y′(fn(x)) = y′(f(x)) for all x ∈ X, y′◦f ∈ Lγ,U (X,C)
and y′ ◦ f : X → C is continuous by Theorem 3.2. But y′ ∈ Y ′ is arbitrary so
f ∈ Wγ,U (X,Y ) and f is continuous by Corollary 4.1. ¤

References

[1] J. L. Kelley, General Topology, D. Van Nostrand Company, Inc., Toronto-New York-
London, 1955.
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