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ON THE STABILITY OF A FIXED POINT ALGEBRA C*(E)”
OF A GAUGE ACTION ON A GRAPH C*-ALGEBRA

JA A JEONG

ABSTRACT. The fixed point algebra C*(E)Y of a gauge action v on a
graph C*-algebra C*(E) and its AF subalgebras C*(E)7 associated to
each vertex v do play an important role for the study of dynamical prop-
erties of C*(E). In this paper, we consider the stability of C*(E)?
(an AF algebra is either stable or equipped with a (nonzero bounded)
trace). It is known that C*(E)7Y is stably isomorphic to a graph C*-
algebra C*(Ez x E) which we observe being stable. We first give an
explicit isomorphism from C*(E)7 to a full hereditary C*-subalgebra of
C*(Ey X E) (C C*(Ez x E)) and then show that C*(Ey x E) is stable
whenever C*(E)7 is so. Thus C*(E)"Y cannot be stable if C*(Ey x E)
admits a trace. It is shown that this is the case if the vertex matrix of F
has an eigenvector with an eigenvalue A > 1. The AF algebras C*(E)7
are shown to be nonstable whenever E is irreducible. Several examples
are discussed.

1. Introduction

Let E be a row finite directed graph and C*(FE) be the graph C*-algebra of
E generated by a universal Cuntz-Krieger E family {p,, s.} (for example, see
[1, 3, 18, 19, 22]). Then by the universal property, the gauge action v of T,
Y2 (Do) = Doy V2(Se) = 2Se, is well defined and the fixed point algebra C*(E)”
turns out to be an AF algebra. In fact, it is known in [17] using results of
[25] and [19] on groupoid C*-algebras that C*(E)" is strong Morita equivalent
(hence stably isomorphic by [7]) to the graph C*-algebra C*(Ez x E) of the
Cartesian product graph Ez X FE (Ez x E is the graph Z x E in [17]). Since
E7 x E has no loops, its graph C*-algebra C*(Ez x E) is an AF algebra ([18]).
In this paper we are concerned with the question whether C*(FE)7 is in fact
isomorphic to C*(Ez x E). For this, we observe that C*(Ez x E) is always
stable, that is, C*(Ez x E) = C*(Ez x F) ® K, where K is the C*-algebra
of compact operators on a separable infinite dimensional Hilbert space. Thus
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the question is equivalent to asking if C*(FE)7 is stable. But we will see that
C*(E)Y may not be stable (then it should admit a nonzero bounded trace since
every AF algebra is either stable or equipped with such a nonzero bounded
trace by [4, 24]).

The fixed point algebra C*(E)” and its AF subalgebras C*(E)7 associated
to each vertex v of E do play an important role for the study of the dynamical
properties of C*(E). For example, if F is locally finite, C*(E)” contains a C*-
subalgebra isomorphic to the commutative C*-algebra Cy(Xg) of continuous
functions (vanishing at infinity) on the locally compact shift space Xg of one-
sided infinite paths, and it is shown in [13] that if X and X are topologically
conjugate, the graph C*-algebras C*(E) and C*(F) are isomorphic. Moreover,
for E irreducible, the topological entropy ht(®g) (in the sense of [8, 28]) of
the canonical completely positive map @ on C*(FE) is equal to that of the
restriction ®p|c«(g)y ([15]). C*(E)] is a ®p-invariant subalgebra of C*(E)”
such that the topological entropy ht(®g|c-(g)y) is equal to the loop entropy of
the graph F if F is a locally finite irreducible infinite graph [13]. The restriction
of @5 onto the commutative subalgebra isomorphic to Cy(Xg) corresponds to
the *-homomorphism on Cy(Xg) induced by the continuous shift map on Xg.

It is known in [7] that every full hereditary C*-subalgebra B of a C*-algebra
A is stably isomorphic to A. We will define an isomorphism from C*(FE)”
onto a full hereditary C*-subalgebra A, of a graph C*-algebra C*(Ey x E)
which itself can be viewed as a full hereditary C*-subalgebra of C*(Ez x E)
(thus C*(E)Y is stably isomorphic to C*(Ez x E) as proved in [17]). The
isomorphism is obtained by using the fact that C*(E)” can be identified with
a full hereditary C*-subalgebra of the crossed product C*(E) x, T because
T is compact ([16, 26]) and the concrete isomorphism between C*(E) x, T
and C*(Ez x E) constructed in [15]. (It was already known in [17] that these
two algebras C*(FE) x, T and C*(Ez x E) are isomorphic, but with no explicit
isomorphism.) The ideal structure of C*(E)” has been studied in [20].

We show in Theorem 4.2 that if C*(E)" is stable, so is C*(Ey x E), which
implies that the C*-algebras A, (= C*(E)Y) C C*(Enx x E) C C*(Ez x E) are
all isomorphic if and only if C*(E)7 is stable. (In particular, C*(E)" can be
realized as a graph C*-algebra.) By an example we also show that the converse
of the theorem may not be true. Theorem 4.2 is useful especially when we
want to prove nonstability of C*(E)7. Of course, C*(FE)" is possibly stable.
Actually a locally finite irreducible (infinite) graph E is given for which C*(E)”
is stable (we prove that C*(En x E) cannot admit a nonzero bounded trace).
In Theorem 5.1, we give a condition in terms of the vertex matrix of F under
which C*(Ey x E) admits a bounded trace, hence C*(E)Y is not stable by
Theorem 4.2. Examples of E with nonstable C*(E)Y are discussed. Finally
we prove that the AF subalgebras C*(E)Y of C*(E)Y are not stable if E is
irreducible.
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2. Preliminaries

Crossed products by compact groups and fixed point algebras. Let
A be a C*-algebra and o be an action of a compact group G on A. Then
the #-algebra C(G, A) of continuous functions from G to A with the following
convolution (as multiplication) and involution

fglt) = /G F(8)aa(g(s~ ) ds,
F(0) = an(F(EY7)

is dense in the crossed product A x G, where ds is the normalized Haar measure
on G (see [21, 7.7] or [10, 8.3.1]). If A denotes the smallest unitization of A
(so A = A if A is unital), every continuous function s : G — A belongs to the
multiplier algebra of A x, G. In particular, the constant function 1¢ : G — A
given by 1¢(s) =1, s € G, is a projection of the multiplier algebra of A x, G
([26]). Thus 1g(A x4 G)1g is a hereditary C*-subalgebra of A x,, G.

Remark 2.1. Let o be an action of a compact group G on a C*-algebra A.

(i) For a function f € C(G)(C C(G,A)) and an element = € A, define
f-xeC(G,A) by

(f-x)(s) = f(s)z, s€q.
Then span{f -z | f € C(G), x € A} is dense in A x, G.
(i) If A% :={a € A|ay(a) =a forall g € G} is the fixed point algebra
of a, identifying z € A% and the constant function 1g -z in C(G, A)
with the value x everywhere we see that

(1) leg‘xlAaﬁ 1g(A XaG)lg

is an isomorphism of A% onto the hereditary subalgebra 1¢(A X, G)1lg
of A x, G (]26]).

Graph C*-algebras. A directed graph E = (E°, E',r, s) consists of the vertex
set B0, the edge set E', and the range, source maps r, s : B! — EY. E is called
row finite if each vertex of F emits only finitely many edges and locally finite
if it is row finite and each vertex receives only finitely many edges. By E™ we
denote the set of all finite paths a = ey ---e,, (r(e;) = s(ei41),1 <i<n—1) of
length n (|a| = n) (Vertices are finite paths of length 0). Then E* = U,>oE"
denotes the set of all finite paths. Infinite paths ejeses - -+ or - - - ezeqeq can be
considered and the maps r or s naturally extend to £* and the infinite paths.
A vertex v is called a sink if s7'(v) = () and a source if r~1(v) = (. In this
paper, we consider only row finite graphs. For v,w € E°, we write v > w if
there is a path o € E* with s(a) = v and r(a) = w.

Now we collect some definitions from [18] and [19] that we will be using
below:

(i) E is irreducible if v > w for any v,w € E°.
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(ii) A finite path 8 is a loop if s(8) = r(8) and |3| > 0.

(iii) An ezit of a subgraph F of E is an edge e € E! with s(e) € FY and
r(e) ¢ FO. E has property (L) if every loop has an exit. A graph with
no loops has the property vacuously.

(iv) E has property (K) if for any vertex v and a loop 3 = 31 - - - B with
5(8) = v there is another loop o = ajay -+~ With s(a) = v such
that o # B; for some ¢ < min{|a|,|8|}. (K) implies (L).

It is now well known ([3, 18, 19, 22]) that there exists a universal C*-algebra
C*(FE), called the graph C*-algebra, associated with a row finite graph E gen-
erated by a Cuntz-Krieger E-family which consists of operators {s.,p, | ¢ €
E',v € E°} such that {s.}.cp1 are partial isometries and {p,},eczo are mutu-
ally orthogonal projections satisfying the relations

5tSe = Pr(ey and p, = Z sest if s7H(w) #£ 0.
s(e)=v
(We simply write C*(E) = C*(se,py) if C*(E) is generated by {se,p, | € €
E'.v € E°}.) For each a = aqaa-- e € E*, a; € E', s, denotes the
partial isometry Sq, Sa, - - - Sae (Sv = sk = p, for v € EY). Note that for every
a e BF
SQSZ < Ps(a) and sta = Pr(a)-

Remark 2.2. Let C*(E) = C*(se, py) be the graph C*-algebra associated with
a row finite graph E. We will need the following basic facts which can be easily
found in [1], [3], [18], [19], [22], etc.

(i) C*(E) = span{sasj | @, 3 € E*} since

S;» if a= ﬁﬂw

. .
54,58 = sy, if B =av,
0, otherwise.

Also so85 = 0 if r(a) # r(8).
(ii) For each p, € C*(E) and n € N, if E is row finite,

Dy = Z SaSh-
s(a)=v
la|=n

(iii) Let E := {v1,va,v3,...}. Then the set of projections {> | p,, | n >
1} forms an approximate identity for C*(FE). C*(E) is unital if and
only if E° is finite.

(iv) If FE has property (L), in particular if E has no loops, every Cuntz-
Krieger E-family of nonzero operators generates a C*-algebra isomor-
phic to C*(E).

(v) If V. C EY is a hereditary subset (v € V, v > w implies w € V),
I(V) = span{sasy | r(a) = r(B) € V} is an ideal of C*(E). Fur-
thermore for E with property (K), V' — Z(V') constitutes a bijection
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between the set of saturated hereditary vertex subsets of E° and the
ideals of C*(E) (V C E° is saturated if r(s~*(v)) C V implies v € V).

Let G be a countable group. Recall ([17]) that for a graph E and a function
c: BE' — G, the skew product graph E(c) is defined to be (G x E°, G x E',r, s),
where

s(g,€) = (g,s(e)) and r(g, ) = (gc(e), r(e)).
For two graphs F and F', the Cartesian product is the graph
ExF=(E"xF° E'x F' rs),
where r(e, f) = (r(e),r(f)) and s(e, f) = (s(e), s(f)). For example, if

EZ . er >0 ———> 00— ——>0———>0 ",
-1 0 1 2 3

EN : o >e0———>0 "',
1 2 3

then Ey x Fz is as follows;

Ey X Ey : o\o\o\o\o
OO N N

Note that Fz x E or En x E have no loops for every E. Moreover, Fz x E =
E(c) if ¢ : EY — Z is given c(e) = 1. For ease of notation, we denote an edge x
of Ez x E by (n,e) (n € Z, e € EY) if s(x) = (n,s(e)) and r(x) = (n+1,7(e)).
For paths of Ez x E (or Ey x E), we use similar notations, namely we write
(n,a) for a path (n,a1)(n+1,az2)--- (n+ |a] = 1, qq)).

3. C*(E)", C*(Ey X E), and C*(E;, X E)

By the universal property of C*(E) = C*(se,py), there exists an action ~y
(called the gauge action) of T on C*(E) given by

7z(se) = ZSe, 7z(pv) = Pv, 2 € T.
The fixed point algebra of v is
C*(E)Y =span{sasj | o, B € E*, |a| = |B]}.

Applying some results of [25] on groupoid C*-algebras it is proved in [17] that
C*(Ez x E) =2 C*(E) x, T. But one can also give an explicit isomorphism:
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Proposition 3.1 ([15]). Let E be a row-finite graph with no sinks. If C*(E) =
C*(pv, s¢) and C*(Ez x E) = C*(P(n,v)> S(n,e)), then there is an isomorphism
n:C*(Ez x E) — C*(E) x4 T such that
n(p(m,'u)) =2" * Do, U(S(m,e)) =2"- Se
where m € Z, v € E°, and e € E*.
Since the graph Ey x E has property (L) for every E, C*(Ey X E) can be
identified with the C*-subalgebra
C*(EN X E) = C*{p(n,v)78(n,e) ‘ neN, ve an S El}
of C*(Ez x E) (Remark 2.2.(iv)).
Proposition 3.2. Let E be a row-finite graph with no sinks.
(i) If F' is a subgraph of E with no exits, then B := span{sasj | o, 3 €
F*} is a hereditary C*-subalgebra of C*(E) that generates the ideal
I(F°) = span{sas}y € C*(E) | r(a) = r(B) € F°}.
(ii) C*(En x E) is a full hereditary C*-subalgebra of C*(Ez x E).
Proof. (i) From Bp-C*(E) C Br we see that By is a hereditary C*-subalgebra
of C*(E). Since F? is a hereditary vertex subset, by Remark 2.2.(v), Z(F°)
is an ideal of C*(E). Bp C Z(F") is obvious and Z(F") is generated by Bp
because s45%5 = SaPr(a)Sj and pr(a) € Br if sasj € Z(FY).
(ii) Let C*(Ez x E) = C*(P(n,v), S(nye)), N € L, v € E% and e € E'. Since

En x E has no exits, by (i), C*(En X E) is a hereditary subalgebra generating
the ideal

7= span{s(n,a)s’("m)ﬁ) | 7(n, ) =r(m,B) € (Ey X E)O}.

Since E has no sinks, every element of the form s,s}, € C*(Ez x E) can be
written as the finite sum of elements sqs% with (o) = 7(8) € (En x E)° by
Remark 2.2.(ii), so that s,s}, € 7. O

Proposition 3.3. Let E be a locally finite graph with no sinks and sources.
Then C*(E)Y is isomorphic to the full hereditary C*-subalgebra

Ay =span{s,a)s(1 ) | @B € E" and |af = [B[}
Of C*(EN X E)

Proof. Letn : C*(EzxE) — C*(E)x,T be the isomorphism of Proposition 3.1.
We show that n(A,) = B, where
B, :=3span{lc - sas5 | @, 3 € E* and |a| = |3}

is isomorphic to C*(E)Y by (1) of Remarks 2.1. Then, since the hereditary C*-
subalgebra B, is full in C*(E) x, T by [16, Proposition 5.4 and Theorem 6.3],
sois A, =n"1(B,) in C*(Ez x E).



ON THE STABILITY OF A FIXED POINT ALGEBRA C*(E)Y 663
First note that if z = sos3, y = sus;, f(2) = 2", and g(z) = 2¥, then

(f-2) % (g-v)(z) = 2 (ay / w1 gy,
T
(f - 2)*(2) = f(2): ()"

from which we have for a« = ayas - o, € E™,

N(81,a)) = N(5(101)) * M(82,02)) * % N(S(n,a0))

= (21 50,) % (22 Say) %% (2" - 8a,,)
=2z"" sq4.
Thus if a, G € E™, then
ﬁ(s(l,a)sa,g)) = U(S(l,a)) * 77(3(1,,8))*
= (2" 8a) *x (2" - 58)" = (2" - 5q) * (1g - 52‘,) =1¢- sasz. 0

Remark 3.4. Tt is known in [17] that C*(E)Y and C*(Ez x E) are stably isomor-
phic (or strong Morita equivalent) if F is a row finite graph with no sinks, which
also immediately follows from Proposition 3.2 and Proposition 3.3 above since
every C*-algebra is stably isomorphic to its full hereditary C*-subalgebras.

4. Stable case

Note that the algebras C*(E)7, C*(Ez x E), and C*(Ey x E) are all AF.
An AF algebra is known to be stable (A = A ® K) unless it admits a nonzero
bounded trace [4, 24].

The following lemma is immediate from [11, Lemma 2.1] and [12, Theo-
rem 3.3]. For two projections p, ¢, we write p < ¢ if p is equivalent to a
subprojection of q.

Lemma 4.1. Let A be a C*-algebra with an approzimate identity (pp)n>1
consisting of projections with p1 < ps < ---. Then we have the following:
(i) A is stable if and only if for every n, there is an m > n such that
Pn S Pm — Dn-
(ii) For a row-finite graph E, C*(E) = C*(py, S¢) is stable if and only if for
each finite subset V. C E°, there is a finite set W C E° with VW = ()
such that Y- . v S D wew Pu-

For a finite subset V' C E°, let py := Zyevpv and let
El iy ={a€eE"[s(a) eV}

Theorem 4.2(ii) below shows that C*(E)Y and C*(Ez x E) (and C*(Ey X E))
are all isomorphic if and only if C*(E)” is stable. A vertex v € E is left-infinite
if there is an infinite path a ending at v such that all edges of « are distinct
(see [11, Lemma 2.11]) and F is left-infinite if every vertex of F is left-infinite.
It is known in [11, Lemma 2.13] that if F is a locally finite left-infinite graph,
C*(FE) is stable. But the converse need not be true, in fact, Ey X E is not
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left invertible while C*(Ey x E) is possibly stable (see Theorem 4.2(iii) and
examples of this section).

Theorem 4.2. Let E be a locally finite infinite graph with no sinks and sources.
Then we have the following:
(i) Let c: E' — G be a function. If E is left-infinite, so is E(c).
(il) C*(Ez x E) is stable.
(iii) If C*(E)Y is stable, then both C*(E) and C*(En x E) are stable.
Proof. (i) Let E be left-infinite and (go,v9) € E(c)°. Since vy € E° is left-

infinite, there is an infinite path « consisting of distinct edges, o = - - - azas
with r(a;) = vg. Then the infinite path

- (goc(an) " te(ag) " te(as) T as)(goc(an) T e(an) T an)(goc(ar) Tt an)
ending at (go, vo) has distinct edges. Hence E(c) is left-infinite.

(ii) Note that Eyz x E is left-infinite.

(iii) Suppose C*(E)" is stable. Since C*(E)" contains an approximate iden-
tity {1 pw; | n=1,2,...} of C*(E) (Remark 2.2.(iii)), applying Lemma 4.1
we see that C*(F) is stable. For stability of C*(Ey x E), let Ey, x E (n > 1)
be the subgraph of Ey x E with (Ey, x E)° = {(k,v) | k > n, v € EY}
and (Ey, x E)! = {(k,e) | k > n, e € E'}. Clearly, ¢, : C*(Exy x E) —
C*(ENn X E)? <»071(17(1',1))) = P(i+n,v)> (Pn(s(j,E)) = S(j+n.e) (Z’J > 1)7 Is an iso-
morphism. For each k > 1 and a finite subset V C E°, set

[kl xV:={(i,v) € (Enx E)°|1<i<k, veV}

Then the corresponding projection pp; xxv can be written as

k k

Phklxv = Zp{n}xv = Z (Zp(n,u))
n=1 n=1 wveV
For each n, consider the projection ga;l(p{n}xy) = piyxv in C*(Ey X E).
Since py1yxv belongs to A, (= C*(E)Y) and we assume that C*(E)" is stable,
by Lemma 4.1.(i) there exists a finite vertex set W C E® with VNW = 0 and a
partial isometry x € C*(E)Y such that ¥z = py1}xv and zz* < priyw. Then
T, = @u(z) is a partial isometry in C*(Ey, x E) satisfying 7,2, = pinyxv
and x,7;, < pinyxw- Now X = 22:1 2, € C*(En x E) is a partial isometry
such that X*X = pp pxv and XX* < ppygxw. This completes the proof
since every finite vertex subset of (Ey x E)? is contained in [1, k] x V for some
kand V and ([1,k] x V) N ([1,k] x W) = 0. O

Proposition 4.3. Let E be a locally finite infinite graph without sinks or
sources. Then we have the following:
(i) C*(E)" is stable if for every finite subset V. C E°, there is an | € N
and a finite vertex subset W C E° with V. NW = () such that for each
o€ Eé,l(v), there is o' € Ei,l(W) with r(a) = r(a’) such that o — o/
18 injective.
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(ii) If every vertex of E receives at most one edge, then C*(Eny x E) is
stable.

Proof. (i) is obvious by Proposition 3.3 and Lemma 4.1.

(ii) Let {p(n,v), S(n.e)} be the Cuntz-Krieger (En x E)-family and V' be a
finite subset of (Eyx x E)°. Then there is kg € N such that (n,v) € V implies
n < k. For each (n,v) € V, consider the following set of paths

Sk = (B x B)¥, = {(n,0) € (B x B | s(n,a) = (n,v)}.

nv)

Then p(y,,.) = Z(n ayesto S, )8 (n,a) 18 €quivalent to Z( ayesto. )s(n @) S(na)s
note here that the prOJectlons S(n,a)s(ma) Pr(n,a) are mutually orthogonal
since there is only one path with range r(n,«) and with length kg. Moreover,
if (m,w) € W :={r(n,a) | (n,a) € Sécfl' s then m > ko and so (m,v) ¢ V.
Therefore we have V N W = () and Z(n,v)eVp("ﬂ)) ~ Z(m,w)ewp(m,w)' Thus
by Lemma 4.1 the assertion follows. O

Example 4.4. For the following graph E, C*(Ey X E) is stable. But C*(E)”
is not.

E: ( . . . . ...

By Proposition 4.3(ii), C*(Ey x E) is stable. But C*(E) is not stable by [11,
Lemma 2.16] since it has a quotient C*-algebra isomorphic to the nonstable
algebra C(T) = C*(E)/Z, where 7 is the ideal corresponding to the saturated
hereditary vertex subset {vi,va,...}. Thus C*(E)” is not stable by Theo-
rem 4.2.(iii).

Example 4.5. C*(F)" is stable if F is as follows:

Iy e ey . es . es . e1 ./'\eo
~_/

Vs V4 V3 V2 U1

In fact, the increasing sequence of projections p, := Z?:l Duv,, M > 1, is an
approximate identity for C*(FE)” such that each p,, is equivalent to p,, — p,, for
some m > n in C*(E)": The partial isometry

P * *
5= Segp_1-e1 Sen,ynelea" + + Sep--re1 ey

of C*(E)7 satisfies s*s = p, and ss* = pa, —py,. Thus the stability of C*(E)”
follows from Lemma 4.1.

Example 4.6. C*(E)" is stable for the following irreducible graph E:

/\/\/\/\/\

SN N e
f5 fi fi f2 f3
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We show that A, (of Proposition 3.3) is stable. Since Ey x E has property (K)
and there are only two nontrivial saturated hereditary vertex subsets Vp, V3
in (Ey x E)® (Vo D {(1,k) | k is even} and V; D {(1,k) | k is odd}) such that
Vo NVi = 0, we see that C*(Ey x E) has only two nontrivial (proper) ideals
Z(Vp) and Z(Vy). Moreover Z(Vo) NZ(Vy) = {0} because Vo N'Vy = @. Since
A, is a full hereditary C*-subalgebra of C*(Ey x E), T — A, NZ establishes a
bijection between the sets of ideals of C*(Ey x E) and A,. Thus A, has two
nontrivial ideals A, NZ(Vy) and A, NZ(V1). But actually these are isomorphic
and A, = (A,NZ(Vh))®(A,NZ(V1)). If A, is not stable, there exists a nonzero
bounded trace 7. Then 7] A,nz(v;) is nonzero for some i = 0,1. Assume that
7| a,nz(vy) is nonzero. Note that the projections {p, := > p__, P(1,v,)}n forms
an approximate identity for A, NZ(Vp). Then 7(p(1,4,,)) # 0 for some k. We
may assume that 7(p(1,4,)) = 1. Consider the following subgraph of Ey x E.

(11}2) (1, Uo) (1, Uz)
\/\/\/\/\/\/
/\/\/\/\/\/\
\./ \./ \./ \./ \./ \./
./\/\/\/\/\/\.

Goos) . Gw) (B

If (1, ), (1, 8) € (Ex x E)? are paths from (1,vg) to (2k+1,v9;), —k < i < k,
then z := 3(170()32‘1 ) € A, satisfies

2" = 50,0)8(1,0) T = 5(1,6)5(1,9)-

Thus 7(5(1,11)3?1,04)) = T(S(Lg)s?l’ﬁ)), hence for each k > 1,

1=7(paw) = D, T@msim) =Y, . T80

acE?® v2i  qeE2F
s(a)=vo s(a)=wvg
r(a)=va;

where —k < i < k. If Ky; is the number of paths a € E?* with s(a) = vy and
r(a) = vy;, then

Let t2; := T(5(1,0)5{ ) for a € E?* with s(a) = vy, 7(a) = vg;. Then

k k
1= 7(pe1,00)) Z Koita; = Z <I<;2f i>t2i < Z (2:>t2i~

i=—k i=—k i=—k
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On the other hand, for each i, there are 22* paths p € E?* with r(u) = vo;.
Thus we have that

k
Irll > > 2%y,
i=—k

Now we show by induction on k that 22¢ > k1/3. (zkk) for all £ > 1. In fact,
the inequality holds for k = 1. Suppose 22¢ > k1/3. (Zkk), then

2k (2Kk)!

92k 1/3 _ 1.1/3 |
>k i k ()2
s 2R)I2k+1)(2k+2) (k+1)(k+1)

(K2 (k+1)(k+1) (2k+1)(2(k+1))
s (2(k+1)! E1/3 k+1

(k+1)D2 (k+1)1/3 22k +1)’

=(k+1)

from which we have

2(k+1) E/3 4k +4
22k+2 1 1/3. . .
> (k+1) k+1 ) (k+ DB dk+2

> (k+1)Y3. <2(::11)>

. 1/3
since (kil)l/g . % > 1 for all £k > 1. Then

k k
2k
7]l > Z 22Kty > Z kl/g( 1 )tQi > /3
i—k i—k

which goes to co as k — oo, a contradiction to the boundedness of 7.

5. Nonstable case

In this section, we consider locally finite infinite graphs E for which C*(Ey x E)
have bounded traces (hence, not stable). Of course, then C*(FE)? is not stable
by Theorem 4.2.

Recall ([11, Definition 2.7]) that 7 : E® — [0,00) is a bounded graph-trace if

7(v) = Z 7(r(e)) and Z T(v) < 00.
{e|s(e)=v} veEEO

If E has no loops, every bounded graph-trace on E extends to a bounded trace
E ([11, Lemma 2.8]).

Theorem 5.1. Let E be a locally finite infinite graph with no sinks and sources.
Let E :={1,2,...} and A = (a;;) be the vertex matriz of E, that is, A is an
E°x EY matriz with a;; edges from vertex i to vertex j. If there is an eigenvector
&= (&,&,...) of A with an eigenvalue A (A€ = X\) such that

i) A>1,

(ii) & >0 for eachi € EY and 0 < 3,5, & < o0,
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then C*(En x E) admits a bounded trace. In particular, C*(Ey X E) is not
stable.
Proof. Since Fy x E has no loops, it is enough to claim that there is a bounded
graph-trace 7 on Ey x E. Define 7 : (Ex x E)? — [0, 00) by
1 .
(p(n ’L)) )\’I’L 1 glv n 2 17 7 Z 1

Then the sum Z(n,i) T(P(ni) = 20 (i et &) = 2on>1 T > i>1 & con-
verges. Also A = X (hence, &=+ >_; @ij&;) implies that for each i € E°,

(p(n z)) >\n 1 )\n Zaljg_] Zam )\n
- ZaijT p(n-i-l,j) = Z T(pr(n,e))'
J

{(n.e)ls(n,e)=(n,i)} (]

Example 5.2. C*(E)" is not stable if F is an irreducible infinite graph as
below:
ﬂ /\ ﬂ ﬂ

E: o Us
\ \/\_/\/\_/

The vertex matrix

2 2 00
10 2 0
01 0 2
00 10

has an eigenvector £ = (2, 212, 213, 2, ...) with A = 3. Thus C*(FEy x E) is not

24
stable by Theorem 5.1 and so C*(E)?” is not stable by Theorem 4.2.

Example 5.3. It is known in [27] that for a pair of positive real numbers
1 < p < g, there exists an irreducible infinite graph £, ; with
hi(Ep,q) =logp and hy(E, ) = logg.

The following graph E := Ej g satisfies h;(E) = log2 and hy(E) = log 8. There
are 8 edges from the vertex vy, to the vertex v, for each n > 0 (Example 3.3
of [14]).

U10 U11 012 'UdO U31 "
<— 0 <— 0 <—-0 <— 0 <— 0

E: Vg2~ A
Vo1~ T T
b i
8 8

G
[ L] [ ] L]
Vo (%1} (% U3
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Note that if a vector £ = (£,),cpo satisfies
(2) > apwbn =26, veE,
weE°

¢ is an eigenvector of the vertex matrix A such that A = 2€. Let £ = (&,)vero
be the vector with &, > 0 as follows:

Then (2) can be shown at every vertex v, and by Theorem 5.1 with A = 2,
C*(En x E) admits a bounded trace, hence is not stable. Hence C*(E)?” is not
stable by Theorem 4.2 again.

Now we consider an AF subalgebra C*(E)) of C*(E)Y for each v € E°,
C*(E), =span{s,sy € C*(E)" | r(a) = r(f) = v}.

The following example shows that C*(E)} and C*(E)} may not be isomorphic
if u # v. The AF algebras C*(E)? and C*(E)} were denoted Ag and Ag(v),
respectively, in [13, 15].

Example 5.4. Consider the following irreducible finite graph E:

e f
X
E : @L [ ] [0
S
g
Let C*(E) be generated by a Cuntz-Krieger E-family {p,, py, S, S¢, Sg}. Then
C*"(E)} =C*(E)” and C*(E)] 2 C*(E)].
In fact, if sqej; € C*(E)], namely r(a) = 7(8) = v (|af = |B]), then sas5 =
SaPuS) = Sa(S¢8y)sh € C*(E),. Thus C*(E)) C C*(E); and hence C*(E)] =
C*(E)Y. On the other hand, C*(E)] has an approximate identity consisting
of projections ¢, where g, 1= py, + > _p_, sekfs:kf. Since

1— QnH = H(pu +po) — QHH = Hse"“sanH =1,

it follows that C*(E)7 is nonunital while C*(E)7 is unital with unit p, + p,.
Thus C*(E)7 is not isomorphic to C*(E)J.

u

Theorem 5.5. Let E be a locally finite irreducible infinite graph and v € E°.
Then C*(E)Y admits a nonzero bounded trace. In particular, C*(E)7 is not
stable.
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Proof. For each n > 0, put
C*(E)],, = span{sasz; e C*(B)] | la] = 18] < n}.

Then {C*(E)] ,, }n>0 is an increasing sequence of finite dimensional C*-subalge-
bras of C*(E)” such that
C*(E)] = U2 C*(E){ n.
Since F is irreducible, the elements in the set
w(v,n) = {sasj € C*(E)] | la] = 6] < n}

are linearly independent by [14, Lemma 3.7, a linear map on C*(E)J,, is
determined by its values on sosj; € w(n,v). We define linear functionals
Tn: C*(E)], —C, n>0

v,n

as follows. Let 7o(p,) = 3. For n > 1, define 7, : C*(E)],, — C by

1/2, if a=p0p=uv,
Tn(8a85) = W, if a=peFEF 1<k<n,
0, otherwise,

where Ny, := [{a € E* | r(a) = v}|. Extend 7, to a linear map on C*(E)],,.
Then 7, c*(B)!,_, = Tn—1 is obvious. Now let

U2 C*(E)]),, —C

v,n
be the linear map given by 7(z) = 7,(z) if z € C*(E)],. To see that 7
is a trace, it suffices to show 7((sus7)(sasjs)) = T((sasj)(susy)) for sasp,
susy € w(n,v). But

W, if f=péand a =vd € EF,
T((Sasfg)(susi)) = Nk21k+1a if p=poandv=ade Ek7
0, otherwise,

which implies that

(353 (5055)) = 7((505%5) (s050):
Now we show that 7(X*X) > 0 for any X € span(w(v,n)) = C*(E)],,. For
this, choose s,s with the smallest length |a| among the terms appearing in
the expression of X. Then decompose X =Y + Z in a way that the terms in
Y are of the form As.,sj, (A € C and r(ap) = r(Bv) = v, hence p, v must be
loops at v whenever |u| = |v| > 1) and Z is the sum of the remainders. Then
T(X*X) =7Y*Y)+7(Z2*Z). If we show 7(Y*Y) > 0, the same argument can
be applied (to Z*Z) repeatedly to prove 7(X*X) > 0 since X has only finite
terms. Moreover, by decomposing Y if needed, it is enough to consider Y of
the form

(3) Y =X SOLSE + )‘1806#1 sgul +oe )‘ksoélll“'ltkszul---uk
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for some loops pj,v; at v with |p;| = |v;|, j =1,..., k. Clearly
T(Y'Y) = |Xo|*T(sgsh) >0 if Y = Agsasp.

'Y = Xosasji + AMSap, $j,,» we have
(YY) = T((XoSﬁSZ + Xlsgyl szm)()\osasg + /\1801“152”1))

— |)\0|2T(S,(355)+|>\1‘ZT(Sgl,lSEyl)+X0)\1’T(55H1SEV1)+X1>\OT(S[3D15E’“).
Hence 7(Y*Y) = |Xo|*7(sps%) + [M[*T(spu,5%,,) > 0if gy # v1. In case
p1 = v, from 7(sgsj) > 7(spu, 85, ), we have
T(Y*Y) = |)\0|27'(5552)+\)\1|27(35M15}§M)—i—XO)\lT(s[g,jlsz)—l—Xl/\OT(sBylsz)

> (120l 4 (A1 + XoAr + A1 Xo) 7 (60, 55,,)

=X+ )\1|27’(8,31,182V1)

> 0.

Now for Y in (3), let I be the smallest number such that g1 # vj41. Then
with puo := a and vy := 3, a computation shows that

k
T(Y*Y) = Z |)\i|2T(SVOV1"'V7$S?:()V1~--V¢)+ Z (Al)‘J + )‘i)‘i>7—(slfol/1"'l’zSzoulnwl)
i=0 i#j
0<i,j<I
> |)\0 +o )‘l|2T(8V0V1“'VLS:;OV1---W)
> 0.
Thus 7, : C*(E)7,, — C is a positive trace for each n. Hence ||7,[| = 7,,(15),
where 1,, is the unit of C*(E)] ,,. But
o1 1 1
Tn(ln)g Z Tn(sasa)§§+27+"'+2n+1 Sl?
r(a)=v
|a|<n

which means that 7 is a bounded trace on the dense subalgebra Uj2 (C*(E)] ,,
of C*(E)Y. Thus T extends to a bounded trace on C*(FE)J. O

v

Remark 5.6. The assertion in Theorem 5.5 may not be true if E is not irre-
ducible (see Example 4.5). It would be very interesting to find a necessary and
sufficient condition, especially in graph theoretical terms, under which C*(E)”
becomes stable.
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