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ON THE STABILITY OF A FIXED POINT ALGEBRA C∗(E)γ

OF A GAUGE ACTION ON A GRAPH C∗-ALGEBRA

Ja A Jeong

Abstract. The fixed point algebra C∗(E)γ of a gauge action γ on a
graph C∗-algebra C∗(E) and its AF subalgebras C∗(E)γ

v associated to
each vertex v do play an important role for the study of dynamical prop-
erties of C∗(E). In this paper, we consider the stability of C∗(E)γ

(an AF algebra is either stable or equipped with a (nonzero bounded)
trace). It is known that C∗(E)γ is stably isomorphic to a graph C∗-
algebra C∗(EZ × E) which we observe being stable. We first give an
explicit isomorphism from C∗(E)γ to a full hereditary C∗-subalgebra of
C∗(EN × E) (⊂ C∗(EZ × E)) and then show that C∗(EN × E) is stable
whenever C∗(E)γ is so. Thus C∗(E)γ cannot be stable if C∗(EN × E)
admits a trace. It is shown that this is the case if the vertex matrix of E
has an eigenvector with an eigenvalue λ > 1. The AF algebras C∗(E)γ

v

are shown to be nonstable whenever E is irreducible. Several examples
are discussed.

1. Introduction

Let E be a row finite directed graph and C∗(E) be the graph C∗-algebra of
E generated by a universal Cuntz-Krieger E family {pv, se} (for example, see
[1, 3, 18, 19, 22]). Then by the universal property, the gauge action γ of T,
γz(pv) = pv, γz(se) = zse, is well defined and the fixed point algebra C∗(E)γ

turns out to be an AF algebra. In fact, it is known in [17] using results of
[25] and [19] on groupoid C∗-algebras that C∗(E)γ is strong Morita equivalent
(hence stably isomorphic by [7]) to the graph C∗-algebra C∗(EZ × E) of the
Cartesian product graph EZ × E (EZ × E is the graph Z × E in [17]). Since
EZ × E has no loops, its graph C∗-algebra C∗(EZ × E) is an AF algebra ([18]).
In this paper we are concerned with the question whether C∗(E)γ is in fact
isomorphic to C∗(EZ × E). For this, we observe that C∗(EZ × E) is always
stable, that is, C∗(EZ × E) ∼= C∗(EZ × E) ⊗ K, where K is the C∗-algebra
of compact operators on a separable infinite dimensional Hilbert space. Thus
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the question is equivalent to asking if C∗(E)γ is stable. But we will see that
C∗(E)γ may not be stable (then it should admit a nonzero bounded trace since
every AF algebra is either stable or equipped with such a nonzero bounded
trace by [4, 24]).

The fixed point algebra C∗(E)γ and its AF subalgebras C∗(E)γ
v associated

to each vertex v of E do play an important role for the study of the dynamical
properties of C∗(E). For example, if E is locally finite, C∗(E)γ contains a C∗-
subalgebra isomorphic to the commutative C∗-algebra C0(XE) of continuous
functions (vanishing at infinity) on the locally compact shift space XE of one-
sided infinite paths, and it is shown in [13] that if XE and XF are topologically
conjugate, the graph C∗-algebras C∗(E) and C∗(F ) are isomorphic. Moreover,
for E irreducible, the topological entropy ht(ΦE) (in the sense of [8, 28]) of
the canonical completely positive map ΦE on C∗(E) is equal to that of the
restriction ΦE |C∗(E)γ ([15]). C∗(E)γ

v is a ΦE-invariant subalgebra of C∗(E)γ

such that the topological entropy ht(ΦE |C∗(E)γ
v
) is equal to the loop entropy of

the graph E if E is a locally finite irreducible infinite graph [13]. The restriction
of ΦE onto the commutative subalgebra isomorphic to C0(XE) corresponds to
the ∗-homomorphism on C0(XE) induced by the continuous shift map on XE .

It is known in [7] that every full hereditary C∗-subalgebra B of a C∗-algebra
A is stably isomorphic to A. We will define an isomorphism from C∗(E)γ

onto a full hereditary C∗-subalgebra Aγ of a graph C∗-algebra C∗(EN × E)
which itself can be viewed as a full hereditary C∗-subalgebra of C∗(EZ × E)
(thus C∗(E)γ is stably isomorphic to C∗(EZ × E) as proved in [17]). The
isomorphism is obtained by using the fact that C∗(E)γ can be identified with
a full hereditary C∗-subalgebra of the crossed product C∗(E) ×γ T because
T is compact ([16, 26]) and the concrete isomorphism between C∗(E) ×γ T
and C∗(EZ × E) constructed in [15]. (It was already known in [17] that these
two algebras C∗(E)×γ T and C∗(EZ × E) are isomorphic, but with no explicit
isomorphism.) The ideal structure of C∗(E)γ has been studied in [20].

We show in Theorem 4.2 that if C∗(E)γ is stable, so is C∗(EN × E), which
implies that the C∗-algebras Aγ(∼= C∗(E)γ) ⊂ C∗(EN × E) ⊂ C∗(EZ × E) are
all isomorphic if and only if C∗(E)γ is stable. (In particular, C∗(E)γ can be
realized as a graph C∗-algebra.) By an example we also show that the converse
of the theorem may not be true. Theorem 4.2 is useful especially when we
want to prove nonstability of C∗(E)γ . Of course, C∗(E)γ is possibly stable.
Actually a locally finite irreducible (infinite) graph E is given for which C∗(E)γ

is stable (we prove that C∗(EN × E) cannot admit a nonzero bounded trace).
In Theorem 5.1, we give a condition in terms of the vertex matrix of E under
which C∗(EN × E) admits a bounded trace, hence C∗(E)γ is not stable by
Theorem 4.2. Examples of E with nonstable C∗(E)γ are discussed. Finally
we prove that the AF subalgebras C∗(E)γ

v of C∗(E)γ are not stable if E is
irreducible.
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2. Preliminaries

Crossed products by compact groups and fixed point algebras. Let
A be a C∗-algebra and α be an action of a compact group G on A. Then
the ∗-algebra C(G, A) of continuous functions from G to A with the following
convolution (as multiplication) and involution

f ∗ g(t) =
∫

G

f(s)αs(g(s−1t))ds,

f∗(t) = αt(f(t−1)∗)

is dense in the crossed product A×αG, where ds is the normalized Haar measure
on G (see [21, 7.7] or [10, 8.3.1]). If Ã denotes the smallest unitization of A

(so Ã = A if A is unital), every continuous function h : G → Ã belongs to the
multiplier algebra of A×α G. In particular, the constant function 1G : G → Ã
given by 1G(s) = 1, s ∈ G, is a projection of the multiplier algebra of A×α G
([26]). Thus 1G(A×α G)1G is a hereditary C∗-subalgebra of A×α G.

Remark 2.1. Let α be an action of a compact group G on a C∗-algebra A.
(i) For a function f ∈ C(G)(⊂ C(G, Ã)) and an element x ∈ A, define

f · x ∈ C(G,A) by

(f · x)(s) = f(s)x, s ∈ G.

Then span{f · x | f ∈ C(G), x ∈ A} is dense in A×α G.
(ii) If Aα := {a ∈ A | αg(a) = a for all g ∈ G} is the fixed point algebra

of α, identifying x ∈ Aα and the constant function 1G · x in C(G,A)
with the value x everywhere we see that

(1) x 7→ 1G · x : Aα → 1G(A×α G)1G

is an isomorphism of Aα onto the hereditary subalgebra 1G(A×α G)1G

of A×α G ([26]).

Graph C∗-algebras. A directed graph E = (E0, E1, r, s) consists of the vertex
set E0, the edge set E1, and the range, source maps r, s : E1 → E0. E is called
row finite if each vertex of E emits only finitely many edges and locally finite
if it is row finite and each vertex receives only finitely many edges. By En we
denote the set of all finite paths α = e1 · · · en (r(ei) = s(ei+1), 1 ≤ i ≤ n−1) of
length n (|α| = n) (Vertices are finite paths of length 0). Then E∗ = ∪n≥0E

n

denotes the set of all finite paths. Infinite paths e1e2e3 · · · or · · · e3e2e1 can be
considered and the maps r or s naturally extend to E∗ and the infinite paths.
A vertex v is called a sink if s−1(v) = ∅ and a source if r−1(v) = ∅. In this
paper, we consider only row finite graphs. For v, w ∈ E0, we write v À w if
there is a path α ∈ E∗ with s(α) = v and r(α) = w.

Now we collect some definitions from [18] and [19] that we will be using
below:

(i) E is irreducible if v À w for any v, w ∈ E0.
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(ii) A finite path β is a loop if s(β) = r(β) and |β| > 0.
(iii) An exit of a subgraph F of E is an edge e ∈ E1 with s(e) ∈ F 0 and

r(e) /∈ F 0. E has property (L) if every loop has an exit. A graph with
no loops has the property vacuously.

(iv) E has property (K) if for any vertex v and a loop β = β1β2 · · ·β|β| with
s(β) = v there is another loop α = α1α2 · · ·α|α| with s(α) = v such
that αi 6= βi for some i ≤ min{|α|, |β|}. (K) implies (L).

It is now well known ([3, 18, 19, 22]) that there exists a universal C∗-algebra
C∗(E), called the graph C∗-algebra, associated with a row finite graph E gen-
erated by a Cuntz-Krieger E-family which consists of operators {se, pv | e ∈
E1, v ∈ E0} such that {se}e∈E1 are partial isometries and {pv}v∈E0 are mutu-
ally orthogonal projections satisfying the relations

s∗ese = pr(e) and pv =
∑

s(e)=v

ses
∗
e if s−1(v) 6= ∅.

(We simply write C∗(E) = C∗(se, pv) if C∗(E) is generated by {se, pv | e ∈
E1, v ∈ E0}.) For each α = α1α2 · · ·α|α| ∈ E∗, αi ∈ E1, sα denotes the
partial isometry sα1sα2 · · · sα|α| (sv = s∗v = pv for v ∈ E0). Note that for every
α ∈ E∗,

sαs∗α ≤ ps(α) and s∗αsα = pr(α).

Remark 2.2. Let C∗(E) = C∗(se, pv) be the graph C∗-algebra associated with
a row finite graph E. We will need the following basic facts which can be easily
found in [1], [3], [18], [19], [22], etc.

(i) C∗(E) = span{sαs∗β | α, β ∈ E∗} since

s∗αsβ =





s∗µ, if α = βµ,
sν , if β = αν,
0, otherwise.

Also sαs∗β = 0 if r(α) 6= r(β).
(ii) For each pv ∈ C∗(E) and n ∈ N, if E is row finite,

pv =
∑

s(α)=v
|α|=n

sαs∗α.

(iii) Let E0 := {v1, v2, v3, . . . }. Then the set of projections {∑n
i=1 pvi | n ≥

1} forms an approximate identity for C∗(E). C∗(E) is unital if and
only if E0 is finite.

(iv) If E has property (L), in particular if E has no loops, every Cuntz-
Krieger E-family of nonzero operators generates a C∗-algebra isomor-
phic to C∗(E).

(v) If V ⊂ E0 is a hereditary subset (v ∈ V , v À w implies w ∈ V ),
I(V ) := span{sαs∗β | r(α) = r(β) ∈ V } is an ideal of C∗(E). Fur-
thermore for E with property (K), V → I(V ) constitutes a bijection
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between the set of saturated hereditary vertex subsets of E0 and the
ideals of C∗(E) (V ⊂ E0 is saturated if r(s−1(v)) ⊂ V implies v ∈ V ).

Let G be a countable group. Recall ([17]) that for a graph E and a function
c : E1 → G, the skew product graph E(c) is defined to be (G×E0, G×E1, r, s),
where

s(g, e) = (g, s(e)) and r(g, e) = (gc(e), r(e)).

For two graphs E and F , the Cartesian product is the graph

E × F = (E0 × F 0, E1 × F 1, r, s),

where r(e, f) = (r(e), r(f)) and s(e, f) = (s(e), s(f)). For example, if

• • • • •_____ // _____ // _____ //_____ // · · · ,· · ·EZ :
−1 0 1 2 3

• • •_____ //_____ // · · · ,EN :
1 2 3

then EN × EZ is as follows;

•

EN × EZ :

•
(1,−1) (1, 0) (1, 1)

• • •
• • • • •
• • • • •

KKK
KKK

%% KKK
KKK

%% KKK
KKK

%% KKK
KKK

%%· · ·
KKK

KKK

%% KKK
KKK

%% KKK
KKK

%% KKK
KKK

%%

· · ·

...

Note that EZ × E or EN × E have no loops for every E. Moreover, EZ × E =
E(c) if c : E1 → Z is given c(e) = 1. For ease of notation, we denote an edge x
of EZ×E by (n, e) (n ∈ Z, e ∈ E1) if s(x) = (n, s(e)) and r(x) = (n + 1, r(e)).
For paths of EZ × E (or EN × E), we use similar notations, namely we write
(n, α) for a path (n, α1)(n + 1, α2) · · · (n + |α| − 1, α|α|).

3. C∗(E)γ , C∗(EN × E), and C∗(EZ × E)

By the universal property of C∗(E) = C∗(se, pv), there exists an action γ
(called the gauge action) of T on C∗(E) given by

γz(se) = zse, γz(pv) = pv, z ∈ T.

The fixed point algebra of γ is

C∗(E)γ = span{sαs∗β | α, β ∈ E∗, |α| = |β|}.
Applying some results of [25] on groupoid C∗-algebras it is proved in [17] that
C∗(EZ × E) ∼= C∗(E)×γ T. But one can also give an explicit isomorphism:
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Proposition 3.1 ([15]). Let E be a row-finite graph with no sinks. If C∗(E) =
C∗(pv, se) and C∗(EZ × E) = C∗(p(n,v), s(n,e)), then there is an isomorphism
η : C∗(EZ × E) → C∗(E)×γ T such that

η(p(m,v)) = zm · pv, η(s(m,e)) = zm · se,

where m ∈ Z, v ∈ E0, and e ∈ E1.

Since the graph EN × E has property (L) for every E, C∗(EN × E) can be
identified with the C∗-subalgebra

C∗(EN × E) = C∗{p(n,v), s(n,e) | n ∈ N, v ∈ E0, e ∈ E1}
of C∗(EZ × E) (Remark 2.2.(iv)).

Proposition 3.2. Let E be a row-finite graph with no sinks.
(i) If F is a subgraph of E with no exits, then BF := span{sαs∗β | α, β ∈

F ∗} is a hereditary C∗-subalgebra of C∗(E) that generates the ideal

I(F 0) = span{sαs∗β ∈ C∗(E) | r(α) = r(β) ∈ F 0}.
(ii) C∗(EN × E) is a full hereditary C∗-subalgebra of C∗(EZ × E).

Proof. (i) From BF ·C∗(E) ⊂ BF we see that BF is a hereditary C∗-subalgebra
of C∗(E). Since F 0 is a hereditary vertex subset, by Remark 2.2.(v), I(F 0)
is an ideal of C∗(E). BF ⊂ I(F 0) is obvious and I(F 0) is generated by BF

because sαs∗β = sαpr(α)s
∗
β and pr(α) ∈ BF if sαs∗β ∈ I(F 0).

(ii) Let C∗(EZ × E) = C∗(p(n,v), s(n,e)), n ∈ Z, v ∈ E0, and e ∈ E1. Since
EN ×E has no exits, by (i), C∗(EN ×E) is a hereditary subalgebra generating
the ideal

I = span{s(n,α)s
∗
(m,β) | r(n, α) = r(m,β) ∈ (EN × E)0}.

Since E has no sinks, every element of the form sµs∗ν ∈ C∗(EZ × E) can be
written as the finite sum of elements sαs∗β with r(α) = r(β) ∈ (EN × E)0 by
Remark 2.2.(ii), so that sµs∗ν ∈ I. ¤

Proposition 3.3. Let E be a locally finite graph with no sinks and sources.
Then C∗(E)γ is isomorphic to the full hereditary C∗-subalgebra

Aγ := span{s(1,α)s
∗
(1,β) | α, β ∈ E∗ and |α| = |β|}

of C∗(EN × E).

Proof. Let η : C∗(EZ×E) → C∗(E)×γT be the isomorphism of Proposition 3.1.
We show that η(Aγ) = Bγ , where

Bγ := span{1G · sαs∗β | α, β ∈ E∗ and |α| = |β|}
is isomorphic to C∗(E)γ by (1) of Remarks 2.1. Then, since the hereditary C∗-
subalgebra Bγ is full in C∗(E)×γ T by [16, Proposition 5.4 and Theorem 6.3],
so is Aγ = η−1(Bγ) in C∗(EZ × E).
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First note that if x = sαs∗β , y = sµs∗ν , f(z) = zn, and g(z) = zk, then

(f · x) ∗ (g · y)(z) = zk
(
xy

∫

T
wn−k+|µ|−|ν|dw

)
,

(f · x)∗(z) = f(z)γz(x)∗

from which we have for α = α1α2 · · ·αn ∈ En,

η(s(1,α)) = η(s(1,α1)) ∗ η(s(2,α2)) ∗ · · · ∗ η(s(n,αn))

= (z1 · sα1) ∗ (z2 · sα2) ∗ · · · ∗ (zn · sαn
)

= zn · sα.

Thus if α, β ∈ En, then

η(s(1,α)s
∗
(1,β)) = η(s(1,α)) ∗ η(s(1,β))∗

= (zn · sα) ∗ (zn · sβ)∗ = (zn · sα) ∗ (1G · s∗β) = 1G · sαs∗β . ¤
Remark 3.4. It is known in [17] that C∗(E)γ and C∗(EZ×E) are stably isomor-
phic (or strong Morita equivalent) if E is a row finite graph with no sinks, which
also immediately follows from Proposition 3.2 and Proposition 3.3 above since
every C∗-algebra is stably isomorphic to its full hereditary C∗-subalgebras.

4. Stable case

Note that the algebras C∗(E)γ , C∗(EZ × E), and C∗(EN × E) are all AF.
An AF algebra is known to be stable (A ∼= A⊗K) unless it admits a nonzero
bounded trace [4, 24].

The following lemma is immediate from [11, Lemma 2.1] and [12, Theo-
rem 3.3]. For two projections p, q, we write p . q if p is equivalent to a
subprojection of q.

Lemma 4.1. Let A be a C∗-algebra with an approximate identity (pn)n≥1

consisting of projections with p1 ≤ p2 ≤ · · · . Then we have the following:
(i) A is stable if and only if for every n, there is an m > n such that

pn . pm − pn.
(ii) For a row-finite graph E, C∗(E) = C∗(pv, se) is stable if and only if for

each finite subset V ⊂ E0, there is a finite set W ⊂ E0 with V ∩W = ∅
such that

∑
v∈V pv .

∑
w∈W pw.

For a finite subset V ⊂ E0, let pV :=
∑

v∈V pv and let

En
s−1(V ) := {α ∈ En | s(α) ∈ V }.

Theorem 4.2(ii) below shows that C∗(E)γ and C∗(EZ × E) (and C∗(EN × E))
are all isomorphic if and only if C∗(E)γ is stable. A vertex v ∈ E0 is left-infinite
if there is an infinite path α ending at v such that all edges of α are distinct
(see [11, Lemma 2.11]) and E is left-infinite if every vertex of E is left-infinite.
It is known in [11, Lemma 2.13] that if E is a locally finite left-infinite graph,
C∗(E) is stable. But the converse need not be true, in fact, EN × E is not
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left invertible while C∗(EN × E) is possibly stable (see Theorem 4.2(iii) and
examples of this section).

Theorem 4.2. Let E be a locally finite infinite graph with no sinks and sources.
Then we have the following:

(i) Let c : E1 → G be a function. If E is left-infinite, so is E(c).
(ii) C∗(EZ × E) is stable.
(iii) If C∗(E)γ is stable, then both C∗(E) and C∗(EN × E) are stable.

Proof. (i) Let E be left-infinite and (g0, v0) ∈ E(c)0. Since v0 ∈ E0 is left-
infinite, there is an infinite path α consisting of distinct edges, α = · · ·α3α2α1

with r(α1) = v0. Then the infinite path

· · · (g0c(α1)−1c(α2)−1c(α3)−1, α3)(g0c(α1)−1c(α2)−1, α2)(g0c(α1)−1, α1)

ending at (g0, v0) has distinct edges. Hence E(c) is left-infinite.
(ii) Note that EZ × E is left-infinite.
(iii) Suppose C∗(E)γ is stable. Since C∗(E)γ contains an approximate iden-

tity {∑n
i=1 pvi

| n = 1, 2, . . . } of C∗(E) (Remark 2.2.(iii)), applying Lemma 4.1
we see that C∗(E) is stable. For stability of C∗(EN ×E), let ENn

×E (n ≥ 1)
be the subgraph of EN × E with (ENn × E)0 = {(k, v) | k ≥ n, v ∈ E0}
and (ENn × E)1 = {(k, e) | k ≥ n, e ∈ E1}. Clearly, ϕn : C∗(EN × E) →
C∗(ENn × E), ϕn(p(i,v)) = p(i+n,v), ϕn(s(j,e)) = s(j+n,e) (i, j ≥ 1), is an iso-
morphism. For each k ≥ 1 and a finite subset V ⊂ E0, set

[1, k]× V := {(i, v) ∈ (EN × E)0 | 1 ≤ i ≤ k, v ∈ V }.
Then the corresponding projection p[1,k]×V can be written as

p[1,k]×V =
k∑

n=1

p{n}×V =
k∑

n=1

( ∑

v∈V

p(n,v)

)
.

For each n, consider the projection ϕ−1
n (p{n}×V ) = p{1}×V in C∗(EN × E).

Since p{1}×V belongs to Aγ(∼= C∗(E)γ) and we assume that C∗(E)γ is stable,
by Lemma 4.1.(i) there exists a finite vertex set W ⊂ E0 with V ∩W = ∅ and a
partial isometry x ∈ C∗(E)γ such that x∗x = p{1}×V and xx∗ ≤ p{1}×W . Then
xn := ϕn(x) is a partial isometry in C∗(ENn × E) satisfying x∗nxn = p{n}×V

and xnx∗n ≤ p{n}×W . Now X :=
∑k

n=1 xn ∈ C∗(EN × E) is a partial isometry
such that X∗X = p[1,k]×V and XX∗ ≤ p[1,k]×W . This completes the proof
since every finite vertex subset of (EN×E)0 is contained in [1, k]× V for some
k and V and ([1, k]× V ) ∩ ([1, k]×W ) = ∅. ¤
Proposition 4.3. Let E be a locally finite infinite graph without sinks or
sources. Then we have the following:

(i) C∗(E)γ is stable if for every finite subset V ⊂ E0, there is an l ∈ N
and a finite vertex subset W ⊂ E0 with V ∩W = ∅ such that for each
α ∈ El

s−1(V ), there is α′ ∈ El
s−1(W ) with r(α) = r(α′) such that α 7→ α′

is injective.
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(ii) If every vertex of E receives at most one edge, then C∗(EN × E) is
stable.

Proof. (i) is obvious by Proposition 3.3 and Lemma 4.1.
(ii) Let {p(n,v), s(n,e)} be the Cuntz-Krieger (EN × E)-family and V be a

finite subset of (EN × E)0. Then there is k0 ∈ N such that (n, v) ∈ V implies
n < k0. For each (n, v) ∈ V , consider the following set of paths

Sk0
(n,v) := (EN × E)k0

s−1(n,v) = {(n, α) ∈ (EN × E)k0 | s(n, α) = (n, v)}.
Then p(n,v) =

∑
(n,α)∈S

k0
(n,v)

s(n,α)s
∗
(n,α) is equivalent to

∑
(n,α)∈S

k0
(n,v)

s∗(n,α)s(n,α),

note here that the projections s∗(n,α)s(n,α) = pr(n,α) are mutually orthogonal
since there is only one path with range r(n, α) and with length k0. Moreover,
if (m,w) ∈ W := {r(n, α) | (n, α) ∈ Sk0

(n,v)}, then m ≥ k0 and so (m, v) /∈ V .
Therefore we have V ∩W = ∅ and

∑
(n,v)∈V p(n,v) ∼

∑
(m,w)∈W p(m,w). Thus

by Lemma 4.1 the assertion follows. ¤

Example 4.4. For the following graph E, C∗(EN × E) is stable. But C∗(E)γ

is not.

• • • • · · ·// // //>>
v0 v1 v2 v3

E :

By Proposition 4.3(ii), C∗(EN × E) is stable. But C∗(E) is not stable by [11,
Lemma 2.16] since it has a quotient C∗-algebra isomorphic to the nonstable
algebra C(T) ∼= C∗(E)/I, where I is the ideal corresponding to the saturated
hereditary vertex subset {v1, v2, . . . }. Thus C∗(E)γ is not stable by Theo-
rem 4.2.(iii).

Example 4.5. C∗(F )γ is stable if F is as follows:

• • • • •//e4 //e3 //e2 //e1
ccv5 v4 v3 v2 v1

e0· · ·F :

In fact, the increasing sequence of projections pn :=
∑n

i=1 pvi , n ≥ 1, is an
approximate identity for C∗(E)γ such that each pn is equivalent to pm−pn for
some m > n in C∗(E)γ : The partial isometry

s := se2n−1···e1s
∗
en−1···e1en

0
+ · · ·+ sen···e1s

∗
en
0

of C∗(E)γ satisfies s∗s = pn and ss∗ = p2n−pn. Thus the stability of C∗(E)γ

follows from Lemma 4.1.

Example 4.6. C∗(E)γ is stable for the following irreducible graph E:

• •E :
ÁÁ •ÁÁv−2 v−1 •ÁÁ •^^^^^^

ÁÁ
^^ v0 v1 v2· · · · · ·

e′2 e′1 e1 e2 e3

f ′2 f ′1 f1 f2 f3

ÁÁ
^^
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We show that Aγ (of Proposition 3.3) is stable. Since EN × E has property (K)
and there are only two nontrivial saturated hereditary vertex subsets V0, V1

in (EN × E)0 (V0 ⊃ {(1, k) | k is even} and V1 ⊃ {(1, k) | k is odd}) such that
V0 ∩ V1 = ∅, we see that C∗(EN × E) has only two nontrivial (proper) ideals
I(V0) and I(V1). Moreover I(V0) ∩ I(V1) = {0} because V0 ∩ V1 = ∅. Since
Aγ is a full hereditary C∗-subalgebra of C∗(EN × E), I 7→ Aγ ∩I establishes a
bijection between the sets of ideals of C∗(EN × E) and Aγ . Thus Aγ has two
nontrivial ideals Aγ ∩I(V0) and Aγ ∩I(V1). But actually these are isomorphic
and Aγ = (Aγ∩I(V0))⊕(Aγ∩I(V1)). If Aγ is not stable, there exists a nonzero
bounded trace τ . Then τ |Aγ∩I(Vi) is nonzero for some i = 0, 1. Assume that
τ |Aγ∩I(V0) is nonzero. Note that the projections {pn :=

∑n
k=−n p(1,vk)}n forms

an approximate identity for Aγ ∩ I(V0). Then τ(p(1,v2k)) 6= 0 for some k. We
may assume that τ(p(1,v0)) = 1. Consider the following subgraph of EN × E.

• • • ••••
• • ••••

• • • ••••
• • ••••

• • • ••••

??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ

ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ

??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ

ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ ÄÄ
Ä

ÄÄ ??
?

ÂÂ

(1, v0)

(5, v0)(5, v−4) (5, v4)

(1, v2)(1, v−2)

(2, v1)

...

· · · · · ·

If (1, α), (1, β) ∈ (EN × E)2k are paths from (1, v0) to (2k+1, v2i), −k ≤ i ≤ k,
then x := s(1,α)s

∗
(1,β) ∈ Aγ satisfies

xx∗ = s(1,α)s
∗
(1,α), x∗x = s(1,β)s

∗
(1,β).

Thus τ(s(1,α)s
∗
(1,α)) = τ(s(1,β)s

∗
(1,β)), hence for each k ≥ 1,

1 = τ(p(1,v0)) =
∑

α∈E2k

s(α)=v0

τ(s(1,α)s
∗
(1,α)) =

∑
v2i

∑

α∈E2k

s(α)=v0
r(α)=v2i

τ(s(1,α)s
∗
(1,α)),

where −k ≤ i ≤ k. If K2i is the number of paths α ∈ E2k with s(α) = v0 and
r(α) = v2i, then

K2i =
(

2k

k − i

)
=

(2k)!
(k + i)!(k − i)!

≤
(

2k

k

)
= K0.

Let t2i := τ(s(1,α)s
∗
(1,α)) for α ∈ E2k with s(α) = v0, r(α) = v2i. Then

1 = τ(p(1,v0)) =
k∑

i=−k

K2it2i =
k∑

i=−k

(
2k

k − i

)
t2i ≤

k∑

i=−k

(
2k

k

)
t2i.
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On the other hand, for each i, there are 22k paths µ ∈ E2k with r(µ) = v2i.
Thus we have that

‖τ‖ ≥
k∑

i=−k

22kt2i.

Now we show by induction on k that 22k > k1/3 · (2k
k

)
for all k ≥ 1. In fact,

the inequality holds for k = 1. Suppose 22k > k1/3 · (2k
k

)
, then

22k > k1/3 ·
(

2k

k

)
= k1/3 · (2k)!

(k!)2

= k1/3 · (2k)!(2k + 1)(2k + 2)
(k!)2(k + 1)(k + 1)

· (k + 1)(k + 1)
(2k + 1)(2(k + 1))

= (k + 1)1/3 · (2(k + 1))!
((k + 1)!)2

· k1/3

(k + 1)1/3
· k + 1
2(2k + 1)

,

from which we have

22k+2 > (k + 1)1/3 ·
(

2(k + 1)
k + 1

)
· k1/3

(k + 1)1/3
· 4k + 4
4k + 2

> (k + 1)1/3 ·
(

2(k + 1)
k + 1

)

since k1/3

(k+1)1/3 · 4k+4
4k+2 > 1 for all k ≥ 1. Then

‖τ‖ ≥
k∑

i=−k

22kt2i >

k∑

i=−k

k1/3

(
2k

k

)
t2i ≥ k1/3

which goes to ∞ as k →∞, a contradiction to the boundedness of τ .

5. Nonstable case

In this section, we consider locally finite infinite graphs E for which C∗(EN × E)
have bounded traces (hence, not stable). Of course, then C∗(E)γ is not stable
by Theorem 4.2.

Recall ([11, Definition 2.7]) that τ : E0 → [0,∞) is a bounded graph-trace if

τ(v) =
∑

{e|s(e)=v}
τ(r(e)) and

∑

v∈E0

τ(v) < ∞.

If E has no loops, every bounded graph-trace on E extends to a bounded trace
E ([11, Lemma 2.8]).

Theorem 5.1. Let E be a locally finite infinite graph with no sinks and sources.
Let E0 := {1, 2, . . . } and A = (aij) be the vertex matrix of E, that is, A is an
E0×E0 matrix with aij edges from vertex i to vertex j. If there is an eigenvector
ξ = (ξ1, ξ2, . . . ) of A with an eigenvalue λ (Aξ = λξ) such that

(i) λ > 1,
(ii) ξi ≥ 0 for each i ∈ E0 and 0 <

∑
i≥1 ξi < ∞,
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then C∗(EN × E) admits a bounded trace. In particular, C∗(EN × E) is not
stable.

Proof. Since EN × E has no loops, it is enough to claim that there is a bounded
graph-trace τ on EN × E. Define τ : (EN × E)0 → [0,∞) by

τ(p(n,i)) =
1

λn−1
ξi, n ≥ 1, i ≥ 1.

Then the sum
∑

(n,i) τ(p(n,i)) =
∑

n(
∑

i
1

λn−1 ξi) =
∑

n≥1
1

λn−1 ·
∑

i≥1 ξi con-
verges. Also Aξ = λξ (hence, ξi = 1

λ

∑
j aijξj) implies that for each i ∈ E0,

τ(p(n,i)) =
1

λn−1
ξi =

1
λn

∑

j

aijξj =
∑

j

aij
1
λn

ξj

=
∑

j

aijτ(p(n+1,j)) =
∑

{(n,e)|s(n,e)=(n,i)}
τ(pr(n,e)).

¤

Example 5.2. C∗(E)γ is not stable if E is an irreducible infinite graph as
below:

• • • • •ÁÁÂÂ "" ¿¿
^^

"" ¿¿
^^

"" ¿¿
^^

"" ¿¿
^^v1 v2 v3 v4 v5 · · ·E :

The vertex matrix 


2 2 0 0 · · ·
1 0 2 0 · · ·
0 1 0 2 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .




has an eigenvector ξ = ( 1
2 , 1

22 , 1
23 , 1

24 , . . . ) with λ = 3. Thus C∗(EN × E) is not
stable by Theorem 5.1 and so C∗(E)γ is not stable by Theorem 4.2.

Example 5.3. It is known in [27] that for a pair of positive real numbers
1 < p ≤ q, there exists an irreducible infinite graph Ep,q with

hl(Ep,q) = log p and hb(Ep,q) = log q.

The following graph E := E2,8 satisfies hl(E) = log 2 and hb(E) = log 8. There
are 8 edges from the vertex vn to the vertex vn+1 for each n ≥ 0 (Example 3.3
of [14]).

•
•

•
• • • • • • • • •

• • •;;
yy

yy
yy

oo oo oo oo oo oo oo ooOO OO OO

// // // //
v0 v1 v2 v3

8 8 8

v01

v02

v10 v11 v12 v30 v31 · · ·

· · ·E :
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Note that if a vector ξ = (ξv)v∈E0 satisfies
∑

w∈E0

avwξw = 2ξv, v ∈ E0,(2)

ξ is an eigenvector of the vertex matrix A such that Aξ = 2ξ. Let ξ = (ξv)v∈E0

be the vector with ξv > 0 as follows:

•
•

•
• • • • • • • • •

• • •;;
yy

yy
yy

oo oo oo oo oo oo oo ooOO OO OO

// // // //8 8 8

1
2

1
22

1
23

1
24

1
25

1
26

1
27

1
23

1
26

1
29

1

· · ·

· · ·E :

Then (2) can be shown at every vertex v, and by Theorem 5.1 with λ = 2,
C∗(EN × E) admits a bounded trace, hence is not stable. Hence C∗(E)γ is not
stable by Theorem 4.2 again.

Now we consider an AF subalgebra C∗(E)γ
v of C∗(E)γ for each v ∈ E0,

C∗(E)γ
v = span{sαs∗β ∈ C∗(E)γ | r(α) = r(β) = v}.

The following example shows that C∗(E)γ
u and C∗(E)γ

v may not be isomorphic
if u 6= v. The AF algebras C∗(E)γ and C∗(E)γ

v were denoted AE and AE(v),
respectively, in [13, 15].

Example 5.4. Consider the following irreducible finite graph E:

• •ÂÂ__<<u vE :

e f

g

Let C∗(E) be generated by a Cuntz-Krieger E-family {pu, pv, se, sf , sg}. Then

C∗(E)γ
u = C∗(E)γ and C∗(E)γ

u � C∗(E)γ
v .

In fact, if sαe∗β ∈ C∗(E)γ
v , namely r(α) = r(β) = v (|α| = |β|), then sαs∗β =

sαpvs∗β = sα(sgs
∗
g)s

∗
β ∈ C∗(E)γ

u. Thus C∗(E)γ
v ⊂ C∗(E)γ

u and hence C∗(E)γ
u =

C∗(E)γ . On the other hand, C∗(E)γ
v has an approximate identity consisting

of projections qn, where qn := pv +
∑n

k=0 sekfs∗ekf . Since

‖1− qn‖ = ‖(pu + pv)− qn‖ = ‖sen+1s∗en+1‖ = 1,

it follows that C∗(E)γ
v is nonunital while C∗(E)γ

u is unital with unit pu + pv.
Thus C∗(E)γ

u is not isomorphic to C∗(E)γ
v .

Theorem 5.5. Let E be a locally finite irreducible infinite graph and v ∈ E0.
Then C∗(E)γ

v admits a nonzero bounded trace. In particular, C∗(E)γ
v is not

stable.
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Proof. For each n ≥ 0, put

C∗(E)γ
v,n := span{sαs∗β ∈ C∗(E)γ

v | |α| = |β| ≤ n}.
Then {C∗(E)γ

v,n}n≥0 is an increasing sequence of finite dimensional C∗-subalge-
bras of C∗(E)γ such that

C∗(E)γ
v = ∪∞n=0C

∗(E)γ
v,n.

Since E is irreducible, the elements in the set

ω(v, n) := {sαs∗β ∈ C∗(E)γ
v | |α| = |β| ≤ n}

are linearly independent by [14, Lemma 3.7], a linear map on C∗(E)γ
v,n is

determined by its values on sαs∗β ∈ ω(n, v). We define linear functionals

τn : C∗(E)γ
v,n → C, n ≥ 0

as follows. Let τ0(pv) = 1
2 . For n ≥ 1, define τn : C∗(E)γ

v,n → C by

τn(sαs∗β) =





1/2, if α = β = v,
1

Nk2k+1 , if α = β ∈ Ek, 1 ≤ k ≤ n,

0, otherwise,

where Nk := |{α ∈ Ek | r(α) = v}|. Extend τn to a linear map on C∗(E)γ
v,n.

Then τn|C∗(E)γ
v,n−1

= τn−1 is obvious. Now let

τ : ∪∞n=0C
∗(E)γ

v,n → C

be the linear map given by τ(x) = τn(x) if x ∈ C∗(E)γ
v,n. To see that τ

is a trace, it suffices to show τ((sµs∗ν)(sαs∗β)) = τ((sαs∗β)(sµs∗ν)) for sαs∗β ,
sµs∗ν ∈ ω(n, v). But

τ((sαs∗β)(sµs∗ν)) =





1
Nk2k+1 , if β = µδ and α = νδ ∈ Ek,

1
Nk2k+1 , if µ = βδ and ν = αδ ∈ Ek,

0, otherwise,

which implies that

τ((sµs∗ν)(sαs∗β)) = τ((sαs∗β)(sµs∗ν)).

Now we show that τ(X∗X) ≥ 0 for any X ∈ span(ω(v, n)) = C∗(E)γ
v,n. For

this, choose sαs∗β with the smallest length |α| among the terms appearing in
the expression of X. Then decompose X = Y + Z in a way that the terms in
Y are of the form λ sαµs∗βν (λ ∈ C and r(αµ) = r(βν) = v, hence µ, ν must be
loops at v whenever |µ| = |ν| ≥ 1) and Z is the sum of the remainders. Then
τ(X∗X) = τ(Y ∗Y )+ τ(Z∗Z). If we show τ(Y ∗Y ) ≥ 0, the same argument can
be applied (to Z∗Z) repeatedly to prove τ(X∗X) ≥ 0 since X has only finite
terms. Moreover, by decomposing Y if needed, it is enough to consider Y of
the form

Y = λ0 sαs∗β + λ1sαµ1s
∗
βν1

+ · · ·+ λksαµ1···µk
s∗βν1···νk

(3)
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for some loops µj , νj at v with |µj | = |νj |, j = 1, . . . , k. Clearly

τ(Y ∗Y ) = |λ0|2τ(sβs∗β) ≥ 0 if Y = λ0sαs∗β .

If Y = λ0sαs∗β + λ1sαµ1s
∗
βν1

, we have

τ(Y ∗Y ) = τ
(
(λ0sβs∗α + λ1sβν1s

∗
αµ1

)(λ0sαs∗β + λ1sαµ1s
∗
βν1

)
)

= |λ0|2τ(sβs∗β)+|λ1|2τ(sβν1s
∗
βν1

)+λ0λ1τ(sβµ1s
∗
βν1

)+λ1λ0τ(sβν1s
∗
βµ1

).

Hence τ(Y ∗Y ) = |λ0|2τ(sβs∗β) + |λ1|2τ(sβν1s
∗
βν1

) ≥ 0 if µ1 6= ν1. In case
µ1 = ν1, from τ(sβs∗β) ≥ τ(sβµ1s

∗
βµ1

)), we have

τ(Y ∗Y ) = |λ0|2τ(sβs∗β)+|λ1|2τ(sβµ1s
∗
βµ1

)+λ0λ1τ(sβν1s
∗
βν1

)+λ1λ0τ(sβν1s
∗
βν1

)

≥ (|λ0|2 + |λ1|2 + λ0λ1 + λ1λ0)τ(sβν1s
∗
βν1

)

= |λ0 + λ1|2τ(sβν1s
∗
βν1

)
≥ 0.

Now for Y in (3), let l be the smallest number such that µl+1 6= νl+1. Then
with µ0 := α and ν0 := β, a computation shows that

τ(Y ∗Y ) =
k∑

i=0

|λi|2τ(sν0ν1···νis
∗
ν0ν1···νi

)+
∑

i 6=j
0≤i,j≤l

(λiλj + λiλi)τ(sν0ν1···νl
s∗ν0ν1···νl

)

≥ |λ0 + · · ·+ λl|2τ(sν0ν1···νl
s∗ν0ν1···νl

)
≥ 0.

Thus τn : C∗(E)γ
v,n → C is a positive trace for each n. Hence ‖τn‖ = τn(1n),

where 1n is the unit of C∗(E)γ
v,n. But

τn(1n) ≤
∑

r(α)=v
|α|≤n

τn(sαs∗α) ≤ 1
2

+
1
22

+ · · ·+ 1
2n+1

≤ 1,

which means that τ is a bounded trace on the dense subalgebra ∪∞n=0C
∗(E)γ

v,n

of C∗(E)γ
v . Thus τ extends to a bounded trace on C∗(E)γ

v . ¤

Remark 5.6. The assertion in Theorem 5.5 may not be true if E is not irre-
ducible (see Example 4.5). It would be very interesting to find a necessary and
sufficient condition, especially in graph theoretical terms, under which C∗(E)γ

becomes stable.
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