DOI QR코드

DOI QR Code

Efficient Flooding Mechanisms with Considering Data Transmission Characteristics of the Wireless Sensor Network

무선 센서 네트워크의 데이터 전송 특성을 고려한 효율적인 플러딩 기법

  • 안상현 (서울시립대학교 컴퓨터과학부) ;
  • 임유진 (수원대학교 정보미디어공학과) ;
  • 김만희 (서울시립대학교 컴퓨터통계학과)
  • Published : 2009.04.30

Abstract

In the wireless sensor network, flooding is required for the dissemination of queries and event announcements. The simple flooding causes the implosion and the overlap problems, so the simple flooding may result in the reduced network lifetime. Therefore, in this paper, we propose the flooding overlay structure (FOS) so that the overhead caused by flooding can be reduced. We propose two variants of FOS mechanisms, the centralized FOS (CFOS) and the distributed FOS (DFOS). In CFOS, the sink collects the network topology information and selects forwarding nodes based on that information. On the other hand, DFOS allows each sensor node to decide whether to act as a forwarding node or not based on its local information. For the performance evaluation of our proposed mechanisms, we carry out NS-2 based simulations and compare ours with the simple flooding and the gossiping. The simulation results indicate that the proposed FOS mechanisms outperform the simple flooding in terms of the network lifetime and the gossiping in terms of the data delivery ratio.

무선 센서 네트워크에서는 질의 분배(dissemination)나 이벤트 광고를 위해 플러딩이 요구된다. Simple(또는 blind) 플러딩은 폭주(implosion) 문제와 겹침(overlap) 문제를 야기하며, 따라서 simple 플러딩은 센서 네트워크의 수명을 감소시킬 수 있다. 따라서 본 논문에서는 플러딩 오버헤드를 줄이기 위해 플러딩 오버레이 구조(Flooding Overlay Structure; FOS)를 제안한다. 두 종류의 FOS 기법인 중앙형 FOS(Centralized FOS; CFOS)와 분산형 FOS(Distributed FOS; DFOS)를 제안하며, CFOS에서는 싱크가 네트워크 토폴로지 정보를 수집해서 그 정보를 기반으로 포워딩 노드를 선택하는 반면, DFOS에서는 각 센서 노드가 자신의 로컬 정보를 기반으로 자신이 브로드캐스트 패킷의 포워딩에 참여할지 여부를 결정한다. 제안한 FOS 기법들의 성능 분석을 위해 NS-2 기반의 시뮬레이션을 수행했으며, FOS 기법들과 simple 플러딩 및 gossiping의 성능을 비교했다. 시뮬레이션 결과, 제안한 FOS 기법들이 네트워크 수명 측면에서 simple 플러딩보다, 데이터 전달율 측면에서 gossiping보다 우수함을 알 수 있었다.

Keywords

References

  1. G. J. Pottie and W. J. Kaiser, 'Wireless Integrated Network Sensors,' Communications of the ACM, Vol.43, No.5, pp. 51-58, May, 2000 https://doi.org/10.1145/332833.332838
  2. C. Intanagonwiwat, R. Govindan and D. Estrin, 'Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks,' ACM Mobicom, pp.56-67, Aug., 2000
  3. D. Braginsky and D. Estrin, 'Rumor Routing Algorithm for Sensor Networks,' ACM WSNA, pp.22-31, Sept., 2002
  4. B. Awerbuch, D. Holmer, H. Rubens, K. Chang and I.-J. Wang, 'The Pulse Protocol: Sensor Network Routing and Power Saving,' IEEE Milcom, pp.662-667, Nov., 2004 https://doi.org/10.1109/MILCOM.2004.1494871
  5. J. Kulik, W. Heinzelman and H. Balakrishnan, 'Negotiationbased Protocols for Disseminating Information in Wireless Sensor Networks,' Wireless Networks, Vol.8, pp.169-185, 2002 https://doi.org/10.1023/A:1013715909417
  6. M.-J. Lin, K. Marzillo and S. Masini, 'Gossip versus Deterministic Flooding: Low Message Overhead and High Reliability for Broadcasting on Small Networks,' DISC, pp. 253-267, 2000
  7. F. Ye, H. Luo, J. Cheng, S. Lu and L. Zhang, 'A Two-Tier Data Dissemination Model for Large-scale Wireless Sensor Networks,' ACM Mobicom, pp.148-159, Sept., 2002
  8. F. Ingelrest, D. Simplot-Ryl and I. Stojmenovic, 'Energy Efficient Broadcasting in Wireless Mobile Ad Hoc Networks,' Resource Management in Wireless Networking, Kluwer Academic Publishers, 2004
  9. W. Lou and J. Wu, 'Toward Broadcast Reliability in Mobile Ad Hoc Networks with Double Coverage,' IEEE Transactions on Mobile Computing, Vol.6, No.2, pp.148-163, Feb., 2007 https://doi.org/10.1109/TMC.2007.31
  10. S. Ashish, 'On the Reduction of Broadcast Traffic in Mobile Ad Hoc Networks,' IEEE WiCom, pp.1581-1584, Sept., 2007
  11. C. Adjib, P. Jacquet and L. Viennot, 'Computing Connected Dominated Sets with Multipoint Relays,' Technical Report 4597, INRIA, Oct., 2002
  12. NRL's Sensor Network Extension to NS-2, http://nrlsensorsim.pf.itd.nrl.navy.mil/
  13. The Network Simulator, NS-2, http://www.isi.edu/nsnam/ns/
  14. Y. Liu, L.M. Ni, and M. Li, 'A Geography-free Routing Protocol for Wireless Sensor Networks', IEEE HPSR, pp. 351-355, May, 2005 https://doi.org/10.1109/HPSR.2005.1503253

Cited by

  1. An Energy Efficient Routing Protocol using Transmission Range and Direction for Sensor Networks vol.17C, pp.1, 2010, https://doi.org/10.3745/KIPSTC.2010.17C.1.081