DOI QR코드

DOI QR Code

Effects of the Deer Antler Extract on Scopolamine-induced Memory Impairment and Its Related Enzyme Activities

녹용 추출물이 치매 동물모델의 기억력 개선과 관련효소 활성에 미치는 효과

  • Lee, Mi-Ra (Dept. of Food Science and Technology, Chungnam National University) ;
  • Sun, Bai-Shen (Dept. of Food Science and Technology, Chungnam National University) ;
  • Gu, Li-Juan (Dept. of Food Science and Technology, Chungnam National University) ;
  • Wang, Chun-Yan (Dept. of Food Science and Technology, Chungnam National University) ;
  • Fang, Zhe-Ming (Dept. of Food Science and Technology, Chungnam National University) ;
  • Wang, Zhen (Dept. of Food Science and Technology, Chungnam National University) ;
  • Mo, Eun-Kyoung (DBIO Research Institute) ;
  • Ly, Sun-Young (Dept. of Food and Nutrition, Chungnam National University) ;
  • Sung, Chang-Keun (Dept. of Food Science and Technology, Chungnam National University)
  • Published : 2009.04.30

Abstract

The aim of this study was to investigate the ameliorating effects of deer antler extract on the learning and memory impairments induced by the administration of scopolamine (2 mg/kg, i.p.) in rats. Tacrine was used as a positive control agent for evaluating the cognition enhancing activity of deer antler extract in scopolamine-induced amnesia models. The results showed that the deer antler extract-treated group (200 mg/kg, p.o.) and the tacrine-treated group (10 mg/kg, p.o.) significantly ameliorated scopolamine-induced amnesia based on the Morris water maze test. Although there was no statistical significance of brain ACh contents among the experimental groups, the brain ACh contents of the deer antler extract-treated group was slightly higher than that of the scopolamine-treated group. The inhibitory effect of deer antler extract on the acetylcholinesterase activity in the brain was significantly lower than that of scopolamine-treated group. The tacrine- and the deer antler-treated groups reduced the MAO-B activity compared to the scopolamine-treated group, but not significantly. These results suggest that the deer antler extract could be an effective agent for the prevention of the cognitive impairment induced by cholinergic dysfunction.

본 연구는 녹용 추출물이 scopolamine으로 기억손상을 유발한 실험동물의 기억력 개선과 AChE, MAO-B의 활성억제, 신경전달 물질인 ACh 함량을 치매 치료제인 tacrine과 비교하여 분석하였다. 공간인지력을 평가하는 Morris water maze test에서 scopolamine(2 mg/kg, i.p.)으로 기억손상을 유발한 경우 4일간의 인지훈련에도 불구하고 platform을 찾아가는 escape latency 시간이 증가되었으며, tacrine과 녹용추출물 투여군은 훈련 2일째부터 유의적으로 escape latency 시간이 감소하였다. 실험 5일째 platform을 제거한 probe test에서도 녹용 추출물 처리군은 scopolamine 처리군보다도 escape latency 시간이 유의적으로 감소하여 장기기억 개선효과가 있음을 보여주었다. 뇌의 신경전달물질인 ACh 생성은 대조군 대비 scopolamine 투여군은 84.7% 감소하였으나, 녹용 추출물 투여군(97.5%)은 치매 치료제인 tacrine(97.8%)과 비슷하게 정상적인 수치로 ACh 생성량을 증가시켰다. Tacrine 처리군은 scopolamine 투여로 상승한 뇌조직과 혈청의 AChE 활성을 유의적으로 감소시켰고, 녹용 추출물 처리군은 뇌조직의 AChE 활성을 유의적으로 감소시켰다. 뇌조직의 MAO-B 활성은 그룹 간 유의적인 차이는 없었으나, tacrine과 녹용 추출물 처리군이 scopolamine 투여군보다 MAO-B 활성을 감소시키는 경향을 보였다. 따라서 녹용 추출물은 scopolamine으로 기억손상을 유발한 치매 동물모델에서 신경전달물질을 분해하는 효소의 활성을 저해함으로써 장기기억 활성을 촉진하고 콜린성 신경계를 자극하여 기억 및 학습 증진에 효과적으로 작용하는 천연물 유래 기능성 물질로 사료된다.

Keywords

References

  1. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO. 1989. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA 262: 2551-2556 https://doi.org/10.1001/jama.262.18.2551
  2. Trabace L, Cassano T, Steardo L, Pietra C, Villetti G, Kendrick KM, Cuomo V. 2000. Biochemical and neurobehavioral profile of CHF 2819, a novel, orally active acetylcholinesterase inhibitor for Alzheimer's disease. J Pharmacol Exp Ther 294: 187-194
  3. Park CH, Kim SH, Choi W, Lee YJ, Kim JS, Kang SS, Suh YH. 1996. Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Planta Med 62: 405-409 https://doi.org/10.1055/s-2006-957926
  4. Kasa P, Papp H, Torok I. 2000. Donepezil dose-dependently inhibits acetylcholinesterase activity in various areas and in the presynaptic cholinergic and the postsynaptic cholinoceptive enzyme-positive structure in the human and rat brain. Neuroscience 101: 89-100 https://doi.org/10.1016/S0306-4522(00)00335-3
  5. Canal N, Imbimbo BP. 1996. Relationship between pharmacodynamic activity and cognitive effects of eptastigmine in patients with Alzheimer's disease. Clin Pharmacol Ther 60: 218-228 https://doi.org/10.1016/S0009-9236(96)90138-1
  6. Davies P, Maloney AJF. 1976. Selective loss of central cholinergic neurons in Alzheimer type disease. Lancet 2: 1403 https://doi.org/10.1016/S0140-6736(76)91936-X
  7. Shin KH, Lim EB, Kim JH, Chung MS, Cho SI. 1989. Pharmacological studies on powdered whole part of unossified antler. Kor J Pharmcogn 20: 180-187
  8. Ha H, Yoon SH. 1996. Analytical studies of constituents of antler. J Korean Soc Food Nutr 25: 279-282
  9. Hong ND, Won DH, Kim NJ, Chang SY, Youn WG, Kim HS. 1991. Studies of analysis of constituent of deer horn (I). Kor J Pharmacogn 22: 171-182
  10. Invankina NF, Isay SV, Busarova NG, Mischenko TY. 1993. Prostaglandin-like activity, fatty acid and phospholipid composition of sika deer (Cervus nippon) antlers at different growth stages. Comp Biochem Physiol B 106: 159-162 https://doi.org/10.1016/0305-0491(93)90022-W
  11. Steven BO, Maribel A, Jennifer N. 2008. Carbohydratebased experimental therapeutics for cancer, HIV/AIDS and other diseases. Acta Histochemica 110: 6-13 https://doi.org/10.1016/j.acthis.2007.08.003
  12. Hasegawa T, Sugeno N, Atsushi T, Michiko MK, Akio K, Katsutoshi F, Taeko M, Yasuto I. 2007. Role of Neu4L sialidase and its substrate ganglioside GD3 in neuronal apoptosis induced by catechol metabolites. FEBS Letters 581: 406-412 https://doi.org/10.1016/j.febslet.2006.12.046
  13. Takuma O, Keisuke I, Masaki W, Mariko O, Katsumi M. 2008. Formation of toxic Aβ(1-40) fibrils on GM1 ganglioside-containing membranes mimicking lipid rafts: polymorphisms in A$\beta$(1-40) fibrils. J Mol Biol 382: 1066-1074 https://doi.org/10.1016/j.jmb.2008.07.072
  14. Kang SY, Lee KY, Park MJ, Kim YC. 2003. Decursin from Angelica gigas mitigates amnesia induced by scopolamine in mice. Neurobiol Learn Mem 79: 11-18 https://doi.org/10.1016/S1074-7427(02)00007-2
  15. Kim DH, Kim DY, Kim YC, Jung JW, Lee SJ, Yoon BH, Cheon JH, Kim YS, Kang SS, Ko KH, Ryu JH. 2007. Nodakenin, a coumarin coumpound, ameliorates scopolamine-induced memory disruption in mice. Life Sci 80: 1944-1950 https://doi.org/10.1016/j.lfs.2007.02.023
  16. Morris RG. 1984. Development of a water maze procedure for studying spatial learning in the rat. J Neurosci Meth 11: 47-60 https://doi.org/10.1016/0165-0270(84)90007-4
  17. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-256 https://doi.org/10.1016/0003-2697(76)90527-3
  18. Ellman GL, Courtney KD, Andres JrV, Feather-Stone RM. 1961. A new and rapid colormetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95 https://doi.org/10.1016/0006-2952(61)90145-9
  19. Kalaria RN, Mitchell MJ, Harik SI. 1987. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain monoamine oxidase activity. Proc Natl Acad Sci 84: 3521-3525 https://doi.org/10.1073/pnas.84.10.3521
  20. Rappaport F, Fischl J, Pinto N. 1959. An improved method for the estiation of cholinesterase activity in serum. Clin Chim Acta 4: 227-230 https://doi.org/10.1016/0009-8981(59)90134-2
  21. Hestrin S. 1949. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J Biochem Chem 180: 249-261
  22. Kim DH, Jeon SJ, Son KH, Jung JW, Lee SJ, Yoon BH, Cho YW, Cheong JH, Ko KH, Ryu JH. 2007. The ameliorating effect of oroxylin A on scopolamine-induced memory impairment in mice. Neurobiol Learn Mem 87: 536-546 https://doi.org/10.1016/j.nlm.2006.11.005
  23. Rispoli V, Rotrioti D, Carelli V, Liberatore F, Scipione, L, Marra R, Giorgioni G, Stefano AD. 2004. Choline pivaloyl esters improve in rats cognitive and memory performances impaired by scopolamine treatment or lesions of nucleus basalis of Meynert. Neurosci Lett 356: 199-202 https://doi.org/10.1016/j.neulet.2003.11.054
  24. Lu MC, Hsieh MT, Wu CR, Cheng HY, Hsieh CC, Lin YT, Peng WH. 2007. Ameliorating effect of emodin, a constitute of Polygonatum multiflorum, on cycloheximide-induced impairment of memory consolidation in rats. J Ethnopharmcol 112: 552-556 https://doi.org/10.1016/j.jep.2007.05.004
  25. Woolf NJ. 1997. A possible role for cholinergic neurons of the basal forebrain and pontomesencephalon in consciousness. Conscious Cogn 6: 574-596 https://doi.org/10.1006/ccog.1997.0319
  26. Wesnes KA, Simpson PM, White L, Pinker S, Jertz G, Murhy M, Siegfried K. 1991. Cholinesterase inhibitor in the scopolamine model of dementia. Ann NY Acad Sci 640: 268-271 https://doi.org/10.1111/j.1749-6632.1991.tb00231.x
  27. Dawson GR, Iversen SD. 1993. The effects of novel cholinesterase inhibitors and selective muscarinic receptor agonists in tests of reference and working memory. Behav Brain Res 57: 143-153 https://doi.org/10.1016/0166-4328(93)90130-I
  28. Giacobini E. 2004. Cholinesterase inhibitor: New role and therapeutic alternatives. Pharmacological 50: 433-440
  29. Hauptmann N, Grimsby J, Shih JC, Cadenas E. 1996. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA. Arch Biochem Biphy 335: 295-304 https://doi.org/10.1006/abbi.1996.0510
  30. Chen XG, Chang DY, Cui ZY, Wang BX. 1992. Effects of the water extract of pilose antler on some biochemical indicators related to aging in old mice. Pharmacology and Clinics of Chinese Materia Medica 8: 17-20
  31. Chen XG, Jia YG, Wang BX. 1992. Study on inhibitory effects of the water extract of pilose antler on monoamine oxidase in old mice. China Journal of Chinese Materia Medica 17: 107-110
  32. Zhou R, Wang J, Li S, Liu Y. 2009. Supercritical fluid extraction of monoamine oxidase inhibitor from antler velvet. Sep Purif Technol 65: 275-281 https://doi.org/10.1016/j.seppur.2008.10.036
  33. Kong LD, Cheng CHK, Tan RX. 2004. Inhibition of MAO A and B by some plant derived alkaloids, phenols and anthraquinones. J Ethnopharmacol 91: 351-355 https://doi.org/10.1016/j.jep.2004.01.013

Cited by

  1. Preparation and Characteristics of Soy Milk Jelly using Medicinal Herb Composites with Cognitive Effects vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1281
  2. Antioxidant Effect of Chungkukjang Supplementation against Memory Impairment induced by Scopolamine in Mice vol.26, pp.3, 2016, https://doi.org/10.17495/easdl.2016.6.26.3.237
  3. Deer Bone Extract Prevents Against Scopolamine-Induced Memory Impairment in Mice vol.18, pp.2, 2015, https://doi.org/10.1089/jmf.2014.3187
  4. Neuroprotective Action of Deer Bone Extract Against Glutamate or Aβ1–42-Induced Oxidative Stress in Mouse Hippocampal Cells vol.17, pp.2, 2014, https://doi.org/10.1089/jmf.2013.2951
  5. Preparation and Characteristics of Bread by Medicinal Herb Composites with Cognitive Function vol.38, pp.9, 2009, https://doi.org/10.3746/jkfn.2009.38.9.1131
  6. 하수오 침출술이 흰쥐의 기억력 손상에 미치는 영향 vol.22, pp.4, 2009, https://doi.org/10.20878/cshr.2016.22.4.009