Anhydrous Polymer Electrolyte Membranes Prepared From Polystyrene-b-Poly (hydroxyl ethyl methacrylate) Block Copolymer

Polystyrene-b-Poly(hydroxyl ethyl methacrylate) 블록 공중합체를 이용한 무가습 고분자 전해질막

  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Do-Kyung (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Roh, Dong-Kyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김종학 (연세대학교 화공생명공학과) ;
  • 서진아 (연세대학교 화공생명공학과) ;
  • 이도경 (연세대학교 화공생명공학과) ;
  • 노동규 (연세대학교 화공생명공학과) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Published : 2009.12.30

Abstract

A block copolymer of polystyrene-b-poly (hydroxyl ethyl methacrylate), PS-b-PHEMA, was synthesized via atom transfer radical polymerization (ATRP) and crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via esterification of the -OH groups of PHEMA in the block copolymer and the -COOH groups of IDA. Upon doping with $H_3PO_4$ to form imidazole-$H_3PO_4$ complexes, the proton conductivity of the membranes continuously increased as the content of $H_3PO_4$ increased. In addition, both the tensile strength and the elongation at break increased with IDA content. A proton conductivity of 0.01 S/cm at $100^{\circ}C$ was obtained for the PS-b-PHEMA/IDA/$H_3PO_4$ membrane with [HEMA]:[IDA]:[$H_3PO_4$] = 3:4:4 under anhydrous conditions. All of the PS-b-PHEMA/IDA/$H_3PO_4$ membranes were thermally stable up to $350^{\circ}C$, as revealed by thermal gravimetric analysis (TGA).

원자전달 라디칼 중합을 이용하여 polystyrene-b-poly (hydroxyethyl methacrylate) (PS-b-PHEMA) 블록 공중합체를 합성한 뒤, 블록 공중합체의 -OH 그룹과 이미다졸 디카르복실릭산 (IDA)의 -COOH 그룹과의 에스테르 반응에 의하여 가교된 전해질막을 제조하였다. 인산($H_3PO_4$)을 도핑하여 이미다졸-인산 착체를 형성한 결과, 인산 함량이 증가함에 따라 공중합체 전해질막의 수소 이온 전도도가 계속 증가하였다. 또한 인장강도와 인장률 모두 인산 함량에 따라 증가하였다. 특히 [HEMA]: [IDA]:[$H_3PO_4$] = 3:4:4의 조성을 갖는 PS-b-PHEMA/IDA/$H_3PO_4$ 블록 공중합체 전해질막은 $100^{\circ}C$의 비가습 조건에서 최대 0.01 S/cm의 수소이온 전도도를 나타내었다. 열분석(TGA) 실험을 통하여 전해질막은 $350^{\circ}C$의 고온까지 열적으로 안정함을 확인하였다.

Keywords

References

  1. S. D. Mikhailenko, K. P. Wang, S. Kaliaguine, P. X. Xing, G. P. Robertson, and M. D. Guiver, 'Proton conducting membranes based on cross-linked sulfonated poly (ether ether ketone) (SPEEK)', J. Membr. Sci., 233, 93 (2004) https://doi.org/10.1016/j.memsci.2004.01.004
  2. V. Ramani, H. R. Kunz, and J. M. Fenton, 'Effect of particle size reduction on the conductivity of $Nafion^{\circledR}$ /phosphotungstic acid composite membranes', J. Membr. Sci., 266, 110 (2005) https://doi.org/10.1016/j.memsci.2005.05.019
  3. D. S. Kim, G. P. Robertson, M. D. Guiver, and Y. M. Lee, 'Synthesis of highly fluorinated poly (arylene ether)s copolymers for proton exchange membrane materials', J. Membr. Sci., 281, 111 (2006) https://doi.org/10.1016/j.memsci.2006.03.020
  4. B. J. Liu, G. P. Robertson, M. D. Guiver, Z. Shi, T. Navessin, and S. Holdcroft, 'Fluorinated poly (arylether) containing a 4-bromophenyl pendant group and its phosphonated derivative', Macromol. Rapid Commun., 27, 1411 (2006) https://doi.org/10.1002/marc.200600337
  5. C. H. Park, C. H. Lee, Y. S. Chung, and Y. M. Lee, 'Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell', Membrane Journal, 16, 241 (2006)
  6. D. J. Kim, B.-J. Chang, C. K. Shin, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Preparation and Characterization of Fluorenyl Polymer Electrolyte Membranes Containing PFCB Groups', Membrane Journal, 16, 16 (2006)
  7. B.-J. Chang, D.-J. Kim, J.-H. Kim, S.-B. Lee, and H.-J. Joo, 'Synthesis and Characterization of Polybenzimidazoles Containing Perfluorocyclobutane Groups for High-temperature Fuel Cell Applications', Korean Membrane Journal, 9, 43 (2007)
  8. S. Licoccia and E. Traversa, 'Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids', J. Power Sources, 159, 12 (2006) https://doi.org/10.1016/j.jpowsour.2006.04.105
  9. T. Itoh, K. Hirai, M. Tamura, T. Uno, M. Kubo, and Y. Aihara, 'Anhydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells', J. Power Sources, 178, 627 (2008) https://doi.org/10.1016/j.jpowsour.2007.08.030
  10. S. Unugur Celik and A. Bozkurt, 'Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly (glycidyl methacrylate)', Eur. Polym. J., 44, 213 (2008) https://doi.org/10.1016/j.eurpolymj.2007.10.010
  11. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, 'Membranes from sulfonated block copolymers for use in fuel cells', Sep. Purif. Technol., 41, 207 (2005) https://doi.org/10.1016/j.seppur.2004.07.018
  12. C. K. Shin, G. Maier, B. Andreaus, and G. G. Scherer, 'Block copolymer ionomers for ion conductive membranes', J. Membr. Sci., 245, 147 (2004) https://doi.org/10.1016/j.memsci.2004.07.027
  13. Y. W. Kim, J. K. Choi, J. T. Park, and J. H. Kim, 'Proton conducting poly (vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolyte membranes', J. Membr. Sci., 313, 315 (2008) https://doi.org/10.1016/j.memsci.2008.01.015
  14. M. Zhang and T. P. Russell, 'Graft copolymers from poly (vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization', Macromolecules, 39, 3531 (2006) https://doi.org/10.1021/ma060128m
  15. D. K. Lee, Y. W. Kim, J. K. Choi, B. R. Min, and J. H. Kim, 'Preparation and characterization of proton conducting crosslinked diblock copolymer membranes', J. Appl. Polym. Sci., 107, 819 (2008) https://doi.org/10.1002/app.27122
  16. D. S. Kim, H. B. Park, J. W. Rhim, and Y. M. Lee, 'Preparation and characterization of crosslinked PVA/ SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications', J. Membr. Sci., 240, 37 (2004) https://doi.org/10.1016/j.memsci.2004.04.010
  17. Y. W. Kim, J. T. Park, J. H. Koh, D. K. Roh, and J. H. Kim, 'Anhydrous proton conducting membranes based on crosslinked graft copolymer electrolytes', J. Membr. Sci., 325, 319 (2008) https://doi.org/10.1016/j.memsci.2008.07.043
  18. J. T. Park, K. J. Lee, M. S. Kang, Y. S. Kang, and J. H. Kim, 'Nanocomposite polymer electrolytes containing silica nanoparticles: comparison between poly (ethylene glycol) and poly (ethylene oxide) dimethyl ether', J. Appl. Polym. Sci., 106, 4083 (2007) https://doi.org/10.1002/app.26951
  19. J. A. Seo, D. K. Roh, J. T. Park, J. H. Koh, S. Maken, and J. H. Kim, 'Preparation of proton conducting crosslinked membranes from PS-b-PHEA diblock copolymer and poly (vinyl alcohol)', Membrane Journal, 18, 234 (2008)
  20. S. R. Narayanan, S.-P. Yen, L. Liu, and S. G. Greenbaum, 'Anhydrous proton-conducting polymeric electrolytes for fuel cells', J. Phys. Chem. B, 110, 3942 (2006) https://doi.org/10.1021/jp054167w
  21. H. Pua, S. Ye, and D. Wan, 'Anhydrous proton conductivity of acid doped vinyltriazole-based polymers', Electrochimica Acta., 52, 5879 (2007) https://doi.org/10.1016/j.electacta.2007.03.021
  22. J. A. Seo, D. K. Roh, J. K. Koh, and J. H. Kim, 'Preparation and characterization of proton conducting composite membranes from P(VDF-CTFE)-g- PSPMA graft copolymer and heteropolyacid', Korean Membr. J., 10, 20 (2008)