Synthesis and Characterization of PPC/Organo-Clay Nanohybrid: Influence of Organically Modified Layered Silicates on Thermal and Water Absorption Properties

PPC와 Organo-Clay 나노 조성물의 합성과 실리카층의 수분흡수와 열적특성에 대한 영향

  • 한학수 (연세대학교 화공생명공학과) ;
  • ;
  • 서종철 (연세대학교 패캐징학과) ;
  • 장의성 (연세대학교 화공생명공학과) ;
  • 최준석 (연세대학교 화공생명공학과) ;
  • 최승혁 (연세대학교 화공생명공학과)
  • Published : 2009.12.30

Abstract

Nanohybrid based on environmentally friendly and biodegradable polymer, poly propylene carbonate (PPC) and cloisite 20B (PPC/C-20B) have been synthesized by solution blending method and their morphology, thermal and water absorption properties have been evaluated. The structure of PPC/C-20B nanohybrid was confirmed by X-ray diffraction (XRD). The thermal property of PPC and PPC/C-20B nanohybrid were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetric (DSC). The experimental results demonstrated that nanohybrid showed the highest thermal stability in TGA and DSC. TGA tests revealed that the thermal decomposition temperature ($T_{d50%}$) of the nanohybrid increased significantly, being $23^{\circ}C$ higher than that of pure PPC while DSC measurements indicated that the introduction of 5 mass% of clay increased the glass transition temperature from 21 to $30^{\circ}C$. Further the water absorption capacity of the PPC was significantly decreased by the incorporation of clay. Water absorption cause degradation of the coating by the moistures and affect the physical and mechanical performance. This result indicates that organic modifiers have effect on thermal and water absorption capacity of PPC and are of importance for the practical process and application of PPC.

Poly propylene carbonate (PPC)와 cloisite 20B (PPC/C-20B)을 solution method를 통하여 합성하였고, 이를 통해 합성된 나노 조성물의 morphology, 열적 특성, 수분 흡수의 특성을 평가하였다. 나노 조성물의 구조는 X-ray diffraction (XRD) 로 확인하였고, 열적 특성은 thermal gravimetric analysis (TGA)와 differential scanning calorimetric (DSC)를 이용해 분석하였다. TGA와 DSC의 결과를 통해 나노 조성물은 기존의 PPC에 비해 높은 열적 안정성을 가짐을 확인할 수 있었다. DSC측정에서 5 wt%의 clay를 포함한 nanohybrid의 유리전이온도는 순수한 PPC의 $21^{\circ}C$에서 $30^{\circ}C$$9^{\circ}C$ 증가하였고, TGA 측정을 통해 확인한 열분해온도($T_{d50%}$)는 순수 PPC에 비해 $23^{\circ}C$가 높아졌음을 확인하였다. 또한 PPC 나노 조성물의 수분 흡수량은 기존의 PPC에 비해 상당히 감소하였다. 이는 clay의 PPC matrix 구조 내에 존재함으로 인해 수분 흡수를 감소시킨 것으로 해석할 수 있다. 수분 흡수는 코팅 막의 분해를 유발하고 물리적, 기계적 성능에 영향을 미친다. 따라서 나노 조성물로 인한 PPC의 열적 안정성, 수분흡수도 향상은 PPC의 사용과 실제 공정에 중요한 변수로 작용할 수 있다.

Keywords

References

  1. S. M. Li, H. Garreau, and M. Vert, 'In vitro degradation of poly(lactic-co-glycolic) acid block copolymers', J. Mater. Sci-Mater M., 1, 123 (1990) https://doi.org/10.1007/BF00700871
  2. M. Vert, S. Li, and H. Garreau, 'More about the degradation of LA/GA-derived matrices in aqueous media', J. Control. Release, 16, 15 (1991) https://doi.org/10.1016/0168-3659(91)90027-B
  3. H. Kranz, N. Ubrich, P. Maincent, and R. Bodmeier, 'Physicomechanical properties of biodegradable poly (D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states', J. Pharm. Sci-Us., 89, 1558 (2000) https://doi.org/10.1002/1520-6017(200012)89:12<1558::AID-JPS6>3.0.CO;2-8
  4. P. Blasi, S. S. D’Souza, F. Selmin, and P. P. DeLuca, 'Plasticizing effect of water on poly(lactide-co-glycolide)', J. Control. Release, 108, 1 (2005) https://doi.org/10.1016/j.jconrel.2005.07.009
  5. M. Tanaka and A. Mochizuki, 'Relationship between blood compatibility and water structure-comparative study between 2-methoxyethylacrylate- and 2-methoxyethylmethacrylate-based random copolymers', J. Biomed. Mater. Res. A, 68, 684 (2004)
  6. J. Siepmann and N. A. Peppas, 'Hydrophilic Matrices for Controlled Drug Delivery: An Improved Mathematical Model to Predict the Resulting Drug Release Kinetics (the 'sequential Layer' Model)', Pharm. Res-Dord., 17, 1290 (2000) https://doi.org/10.1023/A:1026455822595
  7. N. Wu, L. S. Wang, D. C. W. Tan, S. M. Moochhala, and Y. Y. Yang, 'Mathematical modeling and in vitro study of controlled drug release via a highly swell able and dissolvable polymer matrix: polyethylene oxide with high molecular weight', J. Control. Release, 102, 569 (2005) https://doi.org/10.1016/j.jconrel.2004.11.002
  8. Z. Zhang, Q. Shi, J. Peng, J. Song, Q. Chen, J. Yang, Y. Gong, R. Ji, X. He, and J. H. Lee, 'Partial delamination of the organo-montmorillonite with surfactant containing hydroxyl groups in maleated poly(propylene carbonate)', Polymer, 47, 8548 (2006) https://doi.org/10.1016/j.polymer.2006.09.041
  9. L. Du, B. Qu, Y. Meng, and Q. Zhu, 'Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation', Compos. Sci. Technol., 66, 913 (2006) https://doi.org/10.1016/j.compscitech.2005.08.012
  10. L. J. Gao, M. Xiao, S. J. Wang, and Y. Z. Meng, Thermally Stable Poly(propylene carbonate) Synthesized by Copolymerizing with Bulky Naphthalene Containing Monomer', J. Appl. Polym. Sci., 108, 1037 (2008) https://doi.org/10.1002/app.27271
  11. J. Xu, R. K. Y. Li, Y. Z. Meng, and Y. W. Mai, 'Biodegradable poly (propylene carbonate)/montmorillonite nanocomposites prepared by direct melt intercalation', Mater. Res. Bull., 41, 244 (2006) https://doi.org/10.1016/j.materresbull.2005.08.019
  12. S. L. Hong and H. K. Lee, 'Preparation and permeation characteristics of PTMSP-PDMS-silica/PEI composite membranes', Membrane Journal, 18(2), 146 (2008)
  13. B. S. Lee, D. H. Kim, S. W. Yoon, H. S. Im, G. Y. Moon, S. Y. Nam, and J. W. Rhim, 'Pervaporation separation of water-ethanol mixture using crosslinked PVA/PSSA_MA/TEOS hybrid membranes', Membrane Journal, 18(2), 44 (2008)
  14. M. Biswas and S. S. Ray, 'New polymerization techniques and synthetic methodologies', Adv. Polym. Sci., 155, 167 (2001) https://doi.org/10.1007/3-540-44473-4_3
  15. S. C. See, Z. Y. Zhang, and M. O. W. Richardson, 'A study of water absorption characteristics of a novel nano-gelcoat for marine application', Prog. Org. Coat., 65, 169 (2009) https://doi.org/10.1016/j.porgcoat.2008.11.004
  16. K. J. Yao, M. Song, D. J. Hourston, and D. Z. Luo, 'Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites', Polymer, 43, 1017 (2002) https://doi.org/10.1016/S0032-3861(01)00650-4
  17. A. Usuki, A. Tukigase, and M. Kato, 'Preparation and properties of EPDM-clay hybrids', Polymer, 43, 2185 (2002) https://doi.org/10.1016/S0032-3861(02)00013-7
  18. J. Zhu, F. M. Uhl, A. B. Morgan, and C. A. Wilkie, 'Studies on the Mechanism by Which the Formation of Nanocomposites Enhances Thermal Stability,' Chem. Mater., 13, 4649 (2001) https://doi.org/10.1021/cm010451y
  19. S. Bruzaud and A. Bourmaud, 'Thermal degradation and (nano)mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrateco-3-hydroxyvalerate) Nanocomposites', Polym. Test., 26, 652 (2007) https://doi.org/10.1016/j.polymertesting.2007.04.001
  20. J. Seo, W. Jang, and H. Han, “Thermal, optical, and water sorption properties in composite films of poly(ether imide) and bismaleimides: effect of chemical structure’, J. Appl. Polym. Sci., 113, 777 (2009) https://doi.org/10.1002/app.29694
  21. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, 'Preparation and mechanical properties of polypropylene-clay hybrids', Macromolecules, 30, 6333 (1997) https://doi.org/10.1021/ma961786h
  22. H. Lee and D. S. Kim, 'Preparation and physical properties of wood/polypropylene/clay nanocomposites', J. Appl. Polym. Sci., 111, 2769 (2009) https://doi.org/10.1002/app.29331