The Mathematical Foundations of Cognitive Science

인지과학의 수학적 기틀

  • Published : 2009.08.31

Abstract

Anyone wishing to understand cognitive science, a converging science, need to become familiar with three major mathematical landmarks: Turing machines, Neural networks, and $G\ddot{o}del's$ incompleteness theorems. The present paper aims to explore the mathematical foundations of cognitive science, focusing especially on these historical landmarks. We begin by considering cognitive science as a metamathematics. The following parts addresses two mathematical models for cognitive systems; Turing machines as the computer system and Neural networks as the brain system. The last part investigates $G\ddot{o}del's$ achievements in cognitive science and its implications for the future of cognitive science.

현재 융합과학의 모델로 주목받고 있는 인지과학을 이해하기 위해서는 세 가지의 중대한 수학적 업적을 살펴볼 필요가 있다. 본 논문에서는 이 세 가지의 역사적 업적에 해당하는 튜링기계, 신경망, 괴델의 불완전성 정리를 중심으로 인지과학의 수학적 기틀을 연구한다. 먼저, 메타수학으로서의 인지과학을 고찰한다. 다음으로 컴퓨터의 수학적 모델로서 튜링기계와 그 발전을 탐구하고, 뇌의 수학적 모델로서 신경망과 그 발전을 탐구하고자 한다. 마지막으로는 인지과학의 미래를 위한 괴델의 불완전성 정리의 함의를 논의하고 양자인지과학을 전망한다.

Keywords

References

  1. Arbib, M., Brains, Machines, and Mathematics, Springer-Verlag, 1987.
  2. Aspray, W., "The Mathematical Reception of the Modern Computer: John von Neumann and the Institute for Advanced Study Computer," Esther Phillips (ed.), Studies in the History of Mathematics, The Mathematical Association of America, 1987.
  3. Beeson, M., "Computerizing Mathematics: Logic and Computation," Rolf Herken (ed.), The Universal Turing Machine: A Half-Century Survey, Springer-Verlag, 1995.
  4. Blaha, S., The Equivalence of Elementary Particle Theories and Computer Languages: Quantum Computers, Turing Machines, Standard Model, Super String Theory, and a Proof that Godel's Theorem Implies Nature Must be Quantum, A Pingree-Hill Research Monograph, 2005.
  5. Chaitin, G., Thinking about Godel and Turing, World Scientific, 2007.
  6. Davis, M., "Influences of Mathematical Logic on Computer Science," Rolf Herken (ed.), The Universal Turing Machine: A Half-Century Survey, Springer-Verlag, 1995.
  7. Davis, M., "Mathematical Logic and the Origin of Modern Computers," Esther Phillips (ed.), Studies in the History of Mathematics, The Mathematical Association of America, 1987.
  8. Dunn, J., Hagge, T., Moss, L., and Wang, Z., "Quantum Logic as Motivated by Quantum Computing," The J ournal of Symbolic Logic, Vol.70, No.2 (2005), 353-359. https://doi.org/10.2178/jsl/1120224716
  9. Franklin, S., Garzon, M., "Computation by Discrete Neural Nets," Paul Smolensky, Michael Mozer, David Rumelhart (eds.), Mathematical Perspectives on Neural Networks, Lawrence Erlabaum Associates, 1996.
  10. Godel, K., "Some Basic Theorems on the Foundations of Mathematics and Their Implications(1951)," Collected Works, Vol.III., S. Feferman et al. eds., Oxford University Press, 1995.
  11. Godel, K., "Some Remarks on the Undecidability Results(1972)," Collected Works, Vol.II., S. Feferman et al.(eds.), Oxford University Press, 1990.
  12. Goertzel, B., The Structure of Intelligence: A New Mathematical Model of Mind, Springer-Verlag, 1993.
  13. Herken, R.(ed.), The Universal Turing Machine: A Half-Century Survey, Springer-Verlag, 1995.
  14. Hofstadter, D., Godel, Escher, Bach: An Eternal Golden Braid, Basic Books, 1979.
  15. Marr, D., Vision, W. H. Feeman and Company, 1982.
  16. McCarthy, J., "Mathematical Logic in Artificial Intelligence," Stephen Graubard (ed.), Artificial Intelligence Debate: False Starts, Real Foundations, The MIT Press, 1990.
  17. McClelland, J., Rumelhart, D., and Hinton, G., Parallel Distributed Processing, Vol.1. The MIT Press, 1986.
  18. Newell, A., 차경호 옮김, 통합인지이론(Unified Theory of Cognition), 아카넷, 2002.
  19. Norman, D.(ed.), Perspectives on Cognitive Science, Ablex Publishing Corporation, 1981.
  20. Graubard, S.(ed.), Artificial Intelligence Debate: False Starts, Real Foundations, The MIT Press, 1990.
  21. Penrose, R., "On the Physics and Mathematics of Thought," Rolf Herken (ed.), The Universal Turing Machine: A Half-Century Survey, Springer-Verlag, 1995.
  22. Penrose, R., The Large, the Small and the Human Mind, Cambridge University Press, 1997.
  23. Posner, I.(ed.), Foundations of Cognitive Science, The MIT Press, 1989.
  24. Smolensky, P., Mozer, M., and Rumelhart, D.(eds.), Mathematical Perspectives on Neural Networks, Lawrence Erlabaum Associates, 1996.
  25. 미국립연구회의, "인지과학," 과학과 기술, 대한교과서, 1985.
  26. 이정모, 인지과학, 성균관대학교출판부, 2009.
  27. 이정민 외, 인지과학, 태학사, 2001.
  28. 한광희 외, 인지과학: 마음.언어.기계, 학지사, 2000.
  29. 현우식, "계산가능성이론 형성에서의 Church's Thesis와 Turing's Thesis," 한국수학사학회지 11 (1998), No.1, 19-26.
  30. 현우식, "Godel's Critique of Turing's Mechanism," 한국수학사학회지 17 (2004), No.4, 27-36.
  31. 현우식, "Godel's Disjunctive Conclusion," 한국수학사학회지 13 (2000), No.1, 137-141.
  32. 홍성사, "Extensions and Mathematical Extensions," 한태동교수 고희기념논문집, 1995.
  33. 홍성사.홍영희, "순서와 위상구조의 관계," 한국수학사학회지 10 (1997), No.1, 19-32.
  34. 홍성사.홍영희, "Categorical Topology의 역사," 한국수학사학회지 10 (1997), No.2, 11-23.
  35. 홍영희, "격자론의 기원," 한국수학사학회지 12 (1999), No.2, 15-23.