Abstract
The Eudoxean theory of Proportion is correlated with 'Dedekind cut' with which Dedekind defined the real number system in modern usage. Dedekind established a firm foundation for the real number system by retracing some of Eudoxus' steps of over two thousand years earlier. Thus it should be quite worthy that we separate Greek inheritance from the definition of Dedekind, However, there is a fundamental difference between Eudoxean theory of proportion and Dedekind cut. Basically, it seems impossible for Greeks to distinguish between the distinction between number and magnitude. In this paper, we will consider how the Eudoxean theory of proportion was related to Dedekind cut introduced to prove the Dedekind's real number completion and how it influenced Dedekind cut by looking at the relation between Eudoxos's explication of the notion of ratio and Dedekind's well-known construction of the real numbers.
에우독소스의 비례론이 데데킨트가 실수를 현대적으로 정의한 '데데킨트 절단'과 일치한다고 해도 과언이 아니다. 데데킨트는 2000년보다 더 앞선 에우독소스의 방법을 근거로 조사함으로써 실수체계에 대한 확고한 기초를 확립하였다고 볼 수 있다. 그래서 데데킨트의 정의에서 그리스 유산을 구별하는 것은 가치가 있을 것으로 판단된다. 그런데 에우독소스의 비례론과 데데킨트 절단 사이에는 '근본적인 차이'가 존재한다. 그리스인들은 수(number)와 공간적 크기(magnitude)사이의 구별에 생각이 미치지 못한 것으로 보인다. 본 논문에서는 비와 비례 개념에 대한 에우독소스의 설명과 '데데킨트 절단'을 통한 실수의 구조와의 관계를 살펴봄으로서 에우독소스의 비례론이 데데킨트의 실수의 완비성을 증명하기 위해 도입된 절단의 개념과 어떤 관계가 있으며 어떤 영향을 끼쳤는지를 고찰하고자 한다.