Abstract
$Poincar\acute{e}$ is mathematician and the episodes in his mathematical invention process give suggestions to scholars who have interest in how mathematical invention happens. He emphasizes the value of unconscious activity. Furthermore, $Poincar\acute{e}$ points the complementary relation between unconscious activity and conscious activity. Also, $Poincar\acute{e}$ emphasizes the value of intuition and logic. In general, intuition is tool of invention and gives the clue of mathematical problem solving. But logic gives the certainty. $Poincar\acute{e}$ points the complementary relation between intuition and logic at the same reasons. In spite of the importance of relation between intuition and logic, school mathematics emphasized the logic. So students don't reveal and use the intuitive thinking in mathematical problem solving. So, we have to search the methods to use the complementary relation between intuition and logic in mathematics education.
수학 분야에서 수학적 발명이 어떻게 일어나는가에 관심을 갖는 연구가에게 푸앵카레의 자서전적 일화와 그의 저서들은 많은 시사점을 준다. 수학 분야에서 능통한 학자였던 푸앵카레는 그의 수학을 연구하는 과정에 대한 자서전적 글에서 수학 분야에서 발명의 과정에 대한 상세한 설명을 제시하고 있다. 푸앵카레는 의식적 활동 뒤에 일어나는 무의식적 활동의 가치를 논의하고, 수학적 발명의 과정에서 의식적 활동과 무의식적 활동의 상보적 관계를 제시하고 있다. 또한, 수학적 발견의 과정에서 직관과 논리의 상보적 관계를 중시하고 있다. 이것은 유클리드 원론을 바탕으로 논리적 사고를 우선적으로 강조해 온 종전의 수학교육과 학생들의 창의적인 수학 능력을 기르는 교육에 시사하는 바가 크다. 특히 최근의 학습 원리로 직관적 원리를 제시하는 것도 논리와 더불어 직관을 강조해야 한다는 푸앵카레의 견해가 교육 현장에 뿌리내리는 과정이라고 볼 수 있다.