DOI QR코드

DOI QR Code

Development of a Comprehensive Modeling System for Assessing Impact of Temporally and Spatially Changing BMP

시.공간적으로 변화하는 최적관리기법 평가를 위한 통합모형시스템 개발

  • Cho, Jae-Pil (USDA-ARS, Southeast Watershed Research Laboratory) ;
  • Chun, Jong-Ahn (USDA-ARS, Crop Systems and Global Changes Laboratory) ;
  • Saied, Mostaghimi (Biological Systems Engineering Department, Virginia Tech)
  • Published : 2009.03.31

Abstract

토지이용변화가 수질에 미치는 영향을 평가하기 위하여 비점오염모형이 광범위하게 사용되고 있다. 본 연구에서는 최적관리기법이 수문 수질에 미치는 영향을 평가하기위한 통합모형시스템을 개발하였다. 통합모형시스템은 DANSAT (Dynamic Agricultural Non-point Source Assessment Tool)과 사용자 인터페이스로 구성되어 있다. DANSAT은 분포형 연속 강우사상 모형으로서 농업소유역에서의 유출량, 유사량, 농약 물질의 이동기작 등을 모의한다. DANSAT은 크게 동적변수 부모형, 수문 부모형, 유사 이용 부모형, 농약 물질 이동 부모형등 4개의 부모형으로 구성되어있다. 동적변수 부모형은 토양의 특성, 작물의 생장 및 작물 잔여물질의 분해 등을 모의하는 하부모형으로 구성되어있으며, 토지 이용 변화에 관계되는 내부 변수들의 시간적 변화를 모의한다. 수문 부모형은 차단, 증발산량, 침투량, 침루량 등을 모의하는 격자 단위 프로세스와 지표유출, 중간유출, 기저유출 및 하천에서의 물의 이동을 모의하는 유역 단위 프로세스로 구성되어있다. 유사 이동 부모형은 세류간 (interrill) 토양입자의 분리, 세류 (rill) 및 하천내의 토양분리, 운송가능량 등을 모의하며, 농약 물질 이동 부모형은 농약의 분해, 평형, 식물에 의한 흡수, 침출 등을 고려하여 농약 물질의 이동을 모의한다. 입력변수는 최적관리기법의 시 공간적인 변화를 고려할 수 있도록 계층구조로 구성하였다. 유역출구에서의 결과 출력 뿐만 아니라, 유역전체에 걸쳐 지표면과 지하수면 사이에서 물 및 오염물질의 이동량 분석을 위한 출력 및 격자단위의 상세 결과 출력을 통하여 최적관리기법을 평가하고 분석할 수 있다. 한편, 사용자 인터페이스는 모형의 구동을 위해 요구되는 광범위한 시 공간 입력 자료를 기존에 존재하는 데이터베이스를 이용하여 생성할 수 있도록 개발되었다.

Keywords

References

  1. Alberts, E. E., M. A. Nearing, M. A. Weltz, L. M. Risse, F. B. Pierson, X. C. Zhang, J. M. Laflen, and J. R. Simanton, 1995. Chapter 7. Soil Component. In: D. C. Flanagan, and M. A. Nearing (Editors), WEPP Technical Documentation, NSERL Report No. 10, West Lafayette, IN
  2. Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams, 1998. Large-area hydrologic modeling and assessment: Part I. Model development. Journal of American Water Resources Association 34(1): 73-89 https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  3. Arnold, J. G., M. A. Weltz, E. E. Alberts, and D. C. Flanagan, 1995. Chapter 8. Plant Growth Component. In: D. C. Flanagan, and M. A. Nearing (Editors), WEPP Technical Documentation, NSERL Report No. 10, West Lafayette, IN
  4. Bicknell, B. R., J. C. Imhoff, J. L. Kittle, Jr., A. S. Donigian, Jr., and R. C. Johanson, 1993. Hydrologic Simulation Program-FORTRAN (HSPF): User's Manual for Release 10. Report No. EPA/600/R-93/174, U.S. EPA Environmental Research Lab., Athens, GA
  5. Bingner, R. L., and F. D. Theurer, 2001. Topographic factors for RUSLE in the continuous-simulation watershed model for predicting agricultural, non-point source pollutants (AnnAGNPS), In Soil erosion research for the 21st century. Proceedings of the International Symposium, Honolulu, Hawaii, USA, 3-5 January,2001
  6. Borah, D. K., and M. Bera, 2003. Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Transactions of the ASAE 46(6): 1553-1566 https://doi.org/10.13031/2013.15644
  7. Borah, D. K., and M. Bera, 2004. Watershed-scale hydrologic and nonpoint-source pollution models: review of applications. Transactions of the ASAE 47(3):789-803 https://doi.org/10.13031/2013.16110
  8. Borah, D. K., G. Yagow, A. Saleh, P. L. Barnes, W. Rosenthal, E. C. Krug, and L. M. Hauck, 2006. Sediment and nutrient modeling for TMDL development and implementation. Transactions of the Asabe 49(4):967-986
  9. Borg, H., and D. W. Grimes, 1986. Depth development of roots with time: an empirical description. Transactions of the ASAE 29(1): 194-197 https://doi.org/10.13031/2013.30125
  10. Bouraoui, F., 1994. Development of a Continuous, Physically-based, Distributed Parameter, Nonpoint Source Model. Ph.D. Thesis, Blacksburg, Virginia: Virginia Polytechnic Institute and State University
  11. Bouraoui, F., I. Braud, and T. A. Dillaha, 2002. ANSWERS: a nonpoint source pollution model for water, sediment and nutrient losses. Water Resources Publications, Colorado, USA, 833-882 pp
  12. Bouraoui, F., and T. A. Dillaha, 1996. ANSWERS-2000: runoff and sediment transport model. Journal of Environmental Engineering 122(6): 493-502 https://doi.org/10.1061/(ASCE)0733-9372(1996)122:6(493)
  13. Bouraoui, F., and T. A. Dillaha, 2000. ANSWERS-2000: non-point-source nutrient planning model. Journal of Environmental Engineering 126(11): 1045-1055 https://doi.org/10.1061/(ASCE)0733-9372(2000)126:11(1045)
  14. Bouraoui, F., G. Vachaud, R. Haverkamp, and B. Normand, 1997. A distributed physical approach for surface-subsurface water transport modeling in agricultural watersheds. Journal of Hydrology 203: 79-92 https://doi.org/10.1016/S0022-1694(97)00085-1
  15. Byne, W., 2000. Predicting Sediment Detachment and Channel Scour in the Process-based Planning Model ANSWERS-2000. M.S. Thesis, Blacksburg, Virginia: Virginia Polytechnic Institute and State University
  16. Carr, J. C., P. W. McClellan, J. M. Flagg, S. Mostaghimi, and R. K. Byler, 1988. A Management System for Hydrologic and Water Quality Data-HAS87, Paper No. 88-3007. ASAE, Rapid City, SD
  17. Cho, J., 2007. A comprehensive modeling approach for BMP impact assessment considering surface and groundwater interaction. Ph.D. Thesis, Blacksburg, Virginia: Virginia Polytechnic Institute and State University
  18. Cho, J., and S. Mostaghimi, 2009a. Dynamic Agricultural Nonpoint Source Assessment Tool (DANSAT): Model Application. Biosystems Engineering (accepted)
  19. Cho, J., and S. Mostaghimi, 2009b. Dynamic Agricultural Nonpoint Source Assessment Tool (DANSAT): Model Development. Biosystems Engineering (accepted)
  20. Cho, J., and S. Mostaghimi, 2009c. Evaluating cellbased components of DANSAT for predicting surface and subsurface transport of pesticides. Biosystems Engineering (DOI: 10.1016/j.biosystemseng.2009.01.007)
  21. Choi, J. Y., and C. M. Shin, 2002. Management of Nonpoint Pollution by Reducing Storm Runoff, Korean Environment Institute, Seoul, Korea
  22. Engel, B. A., R. Srinivasan, J. Arnold, C. Rewerts, and S. J. Brown, 1993. Nonpoint source (NPS) pollution modelling using models integrated with Geographic Information Systems (GIS). Water Science and Technology 28(3-5): 685-690
  23. Green, W. H., and G. Ampt, 1911. Studies of soil physics, Part I. The flow of air and water through soils. Journal of Agricultural Science 4: 1-24 https://doi.org/10.1017/S0021859600001441
  24. He, C., J. F. Riggs, and Y. T. Kang, 1993. Integration of geographic information systems and a computer model to evaluate impacts of agricultural runoff on water quality. Water Resources Bulletin 29(6): 891-900 https://doi.org/10.1111/j.1752-1688.1993.tb03249.x
  25. He, C., C. Shi, C. Yang, and B. P. Agosti, 2001. A windows-based GIS-AGNPS interface. Journal of the American Water Resources Association 37(2): 395-406 https://doi.org/10.1111/j.1752-1688.2001.tb00977.x
  26. Liao, H. H., and U. S. Tim, 1997. An interactive modeling environment for non-point source pollution control. Journal of the American Water Resources Association 33(3): 591-603 https://doi.org/10.1111/j.1752-1688.1997.tb03534.x
  27. Line, D. E., S. W. Coffey, and D. L. Osmond, 1997. WATERSHEDSS GRASS-AGNPS model tool. Transactions of the ASAE 40(4): 971-975 https://doi.org/10.13031/2013.21348
  28. Line, D. E., G. D. Jennings, R. A. McLaughlin, D. L. Osmond, W. A. Harman, L. A. Lombardo, K. L. Tweedy, and J. Spooner, 1999. Nonpoint sources. Water Environment Research 71(5): 1054-1069 https://doi.org/10.2175/106143099X133965
  29. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams, 2002. Soil and Water Assessment Tool Theoretical Documentation Version 2000. GSWRL Report: 02-01
  30. Novotny, V., and H. Olem, 1994. Water quality prevention, identification, and management of diffuse pollution. Van Nostrand Reinhold, New York, NY
  31. Ogden, F. L., J. Garbrecht, P. A. DeBarry, and L. E. Johnson, 2001. GIS and Distributed Watershed Models. II: Modules, Interfaces, and Models. Journal of Hydrologic Engineering 6(6): 51-523 https://doi.org/10.1061/(ASCE)1084-0699(2001)6:6(515)
  32. Priestley, C. H. B., and R. J. Taylor, 1972. On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review 100:81-92 https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  33. Refsgaard, J. C., and J. Knudsen, 1996. Operational validation and intercomparison of different types of hydrological models. Water Resources Research 32(7):2189-2202 https://doi.org/10.1029/96WR00896
  34. Refsgaard, J. C., and B. Storm, 1995. MIKE SHE. In: V. P. Singh (Editor), Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch, CO., pp. 809-846
  35. Ritchie, J. T., 1972. Model for predicting evaporation from a row crop with incomplete cover. Water Resources Research 8(5): 1204-1213 https://doi.org/10.1029/WR008i005p01204
  36. Savabi, M. R., and J. R. Williams, 1995. Chapter 5. Water Balance and Percolation. In: D. C. Flanagan, and M. A. Nearing (Editors), WEPP Technical Documentation, NSERL Report No. 10, West Lafayette, IN
  37. Sloan, P. G., I. D. Morre, G. B. Coltharp, and J. D. Eigel, 1983. Modeling surface and subsurface stormflow on steeply-sloping forested watersheds. Water Resources Inst. Report 142, Univ. Kentucky, Lexington, KY
  38. Srinivasan, R., and B. A. Engel, 1994. A spatial decision support system for assessing agricultural nonpoint source pollution. Water Resources Bulletin 30(3): 441-452 https://doi.org/10.1111/j.1752-1688.1994.tb03303.x
  39. Stott, D. E., E. E. Alberts, and M. A. Weltz, 1995. Chapter 9. Residue Decomposition and Management. In: D. C. Flanagan, and M. A. Nearing (Editors), WEPP Technical Documentation, NSERL Report No. 10, West Lafayette, IN
  40. Sui, D. Z., and R. C. Maggio, 1999. Integrating GIS with hydrological modeling: practices, problems, and prospects. Computers, Environment and Urban Systems 23(1999): 33-51 https://doi.org/10.1016/S0198-9715(98)00052-0
  41. Tim, U. S., 1996. Emerging technologies for hydrologic and water quality modeling research. Transactions of the ASAE 39(2): 465-475 https://doi.org/10.13031/2013.27524
  42. Truman, C. C., R. A. Leonard, and F. M. Davis, 1998. GLEAMS-TC: a two-compartment model for simulating temperature and soil water content effects on pesticide losses. Soil Science 163(5): 362-373 https://doi.org/10.1097/00010694-199805000-00004
  43. USEPA, 2000. National Water Quality Inventory: 1998 Report to Congress. Office of Water, Washington, D.C.
  44. Veith, T. L., T. M. Nordberg, M. L. Wolf, and T. A. Dillaha, 2000. Questions: a user-friendly interface to ANSWERS-2000, ASAE Annual International Meeting, Milwaukee, Wisconsin, USA
  45. Williams, J. R., 1969. Flood routing with variable travel time or variable storage coefficient. Transaction of the ASAE 12(1): 100-103 https://doi.org/10.13031/2013.38772
  46. Yalin, Y. S., 1963. An expression for bed-load transportation. Journal of the Hydraulics Division, ASCE 89(HY3): 221-250
  47. Zhang, Z., and J. C. Hayes, 1999. An interactive ArcView system for estimating watershed NPS pollution, Paper No. 992245. American Society of Agricultural Engineers, St Joseph, MI

Cited by

  1. Development of a Comprehensive Modeling System for Assessing Impact of Temporally and Spatially Changing BMP vol.51, pp.2, 2009, https://doi.org/10.5389/KSAE.2009.51.2.015
  2. Development of RESTful Web Service for Loading Data focusing on Daily Meteorological Data vol.56, pp.6, 2014, https://doi.org/10.5389/KSAE.2014.56.6.093