DOI QR코드

DOI QR Code

Anti-oxidative properties of ginseng

인삼의 항산화 작용

  • Published : 2009.03.31

Abstract

Clinical and animal studies have shown that free radical overload is an important cause for a variety of diseases. Although ginseng has been recognized as antioxidant, how it modulates anti-oxidative process at the molecular level remains unknown. Free radical production is induced by tumor necrosis factor-$\alpha$ (TNF-$\alpha$) under the stress condition, and (TNF-$\alpha$) release is activated by TNF-$\alpha$-converting enzyme (TACE). Since TACE inhibitor is also well known for anti-inflammatory agent, ginseng seems to show anti-oxidative activity by repressing TACE pathway. Further studies on signal transduction would be warranted to elucidate molecular action mechanisms of ginseng on anti-oxidation and anti-inflammation.

우리 몸의 많은 기관을 비롯하여 장기들은 반복적이거나 혹은 급성 스트레스를 이겨내지 못하고 만성 스트레스로 이어질 경우 질병이 생기게 된다. 특히 강하고 지속적인 스트레스에 노출되면 뇌의 해마 수지상 세포(hippocampal dendrites)가 위축되거나 크기가 작아진다. 이렇게 스트레스로 인하여 증가된 글루코 코티코이드 호르몬은 뉴런 흥분제인 glutamate를 유도하거나 에너지 대사를 변형시켜 신경 독작용을 일으킨다. 이러한 연속적인 반응은 TNF-$\alpha$ convertase(TACE)를 활성화시켜 TNF-$\alpha$가 분비되도록 하여 전사 조절자인 NF-${\kappa}B$가 핵내로 전이되고 신경 손상을 일으키는 iNOS와 COX-2와 같은 효소를 유도한다. 이런 산화적 스트레스의 상위조절인자 TACE는 스트레스에 의한 여러 가지 염증성 질환 및 숙주방어에서 가장 중요한 조절자인 TNF-alpha를 수용체로부터 "유리(shedding)" 시키는 역할을 한다. 따라서 이런 신호 전달계를 자극하는 TACE의 발현 양과 이로 인한 지속적인 처리과정이 중요한 문제로 대두되고 있다. 특히 여러 스트레스 중에서 고정화 스트레스 및 신체적 구속 스트레스에 대한 연구는 뇌에서 산화물 생성을 증가시키지만 인삼이 뇌의 산화물질 생성에 어떤 영향을 미치는지 체계적인 연구가 진행된 바 없다. 따라서 염증을 매개하는 TNF-alpha의 생산에 중요한 역할을 하는 TACE의 발현 조절 및 TNF-alpha 신호전달을 연구함으로써 인삼의 항산화 기전을 분자 수준에서 규명할 수 있게 될 것으로 기대된다.

Keywords

References

  1. Kitts, D. D., Wijewickreme, A. N. and Hu, C. : Antioxidant properties of a North American ginseng extract. Mol Cell Biochem. 203, 1-10 (2000) https://doi.org/10.1023/A:1007078414639
  2. Corbit, R. M., Ferreira, J. F., Ebbs, S. D. and Murphy, L. L. : Simplified extraction of ginsenosides from American ginseng (Panax quinquefolius L.) for highperformance liquid chromatography-ultraviolet analysis. J Agric Food Chem. 53, 9867-73 (2005) https://doi.org/10.1021/jf051504p
  3. Yun, T. K. : Panax ginsenga non-organ-specific cancer preventive? Lancet Oncol. 2, 49-55 (2001) https://doi.org/10.1016/S1470-2045(00)00196-0
  4. Bloch, A. and Thomson, C. A. : Position of the American dietetic association : phytochemicals and functional foods. J Am Dietet Assoc. 95, 493-96 (1995) https://doi.org/10.1016/S0002-8223(95)00130-1
  5. Zab ocka, A. and Janusz, M. : The two faces of reactive oxy-gen species. Postepy Hig Med Dosw. 26, 62,118-24 (2008)
  6. Hofseth, L. J. and Wargovich, M. J. : Inflammation,Cancer, and Targetsof Ginseng1 J. Nutr. 137, 183S185S (2007) https://doi.org/10.1093/jn/137.1.183S
  7. Attele, A.S., Wu, J.A. and Yuan, C.S. : Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  8. Lee, T.K., Johnke, R.M., Allison, R.R., O'Brien, K.F. and Dobbs Jr., L.J. : Radioprotective potential of ginseng. Mutagenesis. 20, 237-243 (2005) https://doi.org/10.1093/mutage/gei041
  9. Liou, C.J., Huang, W.C. and Tseng, J. : Long-term oral administration of ginseng extract modulates humoral immune response and spleen cell functions. Am. J. Chin. Med. 33, 651-661 (2005) https://doi.org/10.1142/S0192415X05003247
  10. Lee, S.J., Sung, J.H., Lee, S.J., Moon, C.K. and Lee, B.H. : Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett. 144, 39-43 (1999) https://doi.org/10.1016/S0304-3835(99)00188-3
  11. Kitts, D.D., Wijewickreme, A.N. and Hu, C. : Antioxidant properties of a North American ginseng extract. Mol. Cell. Biochem. 203, 1-10 (2000) https://doi.org/10.1023/A:1007078414639
  12. Bae, J.W. and Lee, M.H. : Effect and putative mechanism of action of ginseng on the formation of glycated hemoglobin in vitro. J. Ethnopharmacol. 90,137-140 (2004) https://doi.org/10.1016/j.jep.2003.12.008
  13. Mehendale, S.R., Aung, H.H., Yin, J.J., Lin, E., Fishbein, A., Wang, C.Z., Xie, J.T. and Yuan, C.S. : Effects of antioxidant herbs on chemotherapyinduced nausea and vomiting in a rat-pica model. Am. J. Chin. Med. 32, 897-905 (2004) https://doi.org/10.1142/S0192415X04002508
  14. Cross, C.E., Halliwell, B., Borish, E.T., Pryor, W.A., Ames, B.N., Saul, R.L., McCord, J.M. and Harman, D. : Oxygen radicals and human disease. Ann Intern Med. 107: 526-545(1987) https://doi.org/10.7326/0003-4819-107-4-526
  15. Volpert, R. and Elstner, E.F. : Biochemical activities of propolis extracts. I. Standardization and antioxidative properties of ethanolic and aqueous derivatives. Z. Naturforsch. 48C, 851-857 (1993)
  16. Kovacs, P., Juranek, I., Stankovicova, T. and Svec, P. : Lipid peroxidation during acute stress. Pharmazie. 51, 51-53 (1996)
  17. Liu, J., Wang, X., Shigenaga, M.K., Yeo, H.C., Mori, A. and Ames, B.N. : Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J. 10: 1532-8 (1996) https://doi.org/10.1096/fasebj.10.13.8940299
  18. Shaheen, A.A., Abd El-Fattah, A. and Gad, M.Z. : Effect of various stressors on the level of lipid peroxide, antioxidants and Na+, K+-ATPase activity in rat brain. Experientia. 52, 336-9 (1996) https://doi.org/10.1007/BF01919536
  19. Achike, F.I. and Kwan, C.Y. : Nitric oxide, human diseases and the herbal products that affect the nitric oxide signalling pathway. Clin Exp Pharmacol Physiol. 30(9):605-15 (2003) https://doi.org/10.1046/j.1440-1681.2003.03885.x
  20. Kanter, M.M, Nolte, L.A. and Holloszy, J.O. : Effects of an antioxidand vitamin mixture on lipid peroxidation at rest and postexercise. J. Appl. Physiol. 72(2), 965-969(1993) https://doi.org/10.1152/jappl.1993.74.2.965
  21. Seals, D.F. and Courtneidge, S.A. : The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17: 7-30 (2003) https://doi.org/10.1101/gad.1039703
  22. Black, R.A., Rauch, C.T., Kozlosky, C.J., Peschon, J.J., Slack, J.L., Wolfson, M.F., Castner, B.J., Stocking, K.L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K.A., Gerhart, M., Davis, R., Fitzner, J.N., Johnson, R.S., Paxton, R.J., March, C.J. and Cerretti, D.P. : A metalloproteinase disintegrin that releases tumour-necrosis factor-$\alpha$ from cells. Nature. 385, 729-33 (1997) https://doi.org/10.1038/385729a0
  23. Moss, M.L., Jin, S.L., Milla, M.E., Bickett, D.M., Burkhart, W., Carter, H.L., Chen, W.J., Clay, W.C., Didsbury, J.R., Hassler, D., Hoffman, C.R., Kost, T.A., Lambert, M.H., Leesnitzer, M.A., McCauley, P., McGeehan, G., Mitchell, J., Moyer, M., Pahel, G., Rocque, W., Overton, L.K., Schoenen, F., Seaton, T., Su, J.L. and Becherer, J.D. : Cloning of a disintegrin metalloproteinase that processes precursor tumournecrosis factor-alpha. Nature. 385, 733-6. (1997) https://doi.org/10.1038/385733a0
  24. Sahin, U., Weskamp, G., Kelly, K., Zhou, H.M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P. and Blobel, C.P. : Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 164, 769-79. (2004) https://doi.org/10.1083/jcb.200307137
  25. Berry, M.A., Hargadon, B., Shelley, M., Parker, D., Shaw, D.E., Green, R.H., Bradding, P., Brightling, C.E., Wardlaw, A.J. and Pavord, I.D. : Evidence of a role of tumor necrosis factor in refractory asthma. N. Engl. J. Med. 354, 697-708 (2006) https://doi.org/10.1056/NEJMoa050580
  26. Hehlgans, T. and Pfeffer, K. : The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 115, 1-20 (2005) https://doi.org/10.1111/j.1365-2567.2005.02143.x
  27. Horiuchi, K., Kimura, T., Miyamoto, T., Takaishi, H., Okada, Y., Toyama, Y. and Blobel, C.P. : TNF-$\alpha$-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J. Immunol. 179, 2686-2689 (2007) https://doi.org/10.4049/jimmunol.179.5.2686
  28. Scott, D.L. and Kingsley, G.H. : Tumor necrosis factor inhibitors for rheumatoid arthritis. N. Engl. J. Med. 355, 704-712 (2006) https://doi.org/10.1056/NEJMct055183
  29. Funk, C.D. : Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294, 1871-5 (2001) https://doi.org/10.1126/science.294.5548.1871
  30. Bar-Shai, M., Carmeli, E., Ljubuncic, P. and Reznick, A.Z. : Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation. Free Radic Biol Med. 44(2), 202-14 (2008) https://doi.org/10.1016/j.freeradbiomed.2007.03.019
  31. DasGupta, S., Murumkar, P.R., Giridhar, R. and Yadav, M.R. : Current perspective of TACE inhibitors: a review. Bioorg Med Chem. 17(2), 444-59 (2009) https://doi.org/10.1016/j.bmc.2008.11.067
  32. Kang, K.S., Kim, H.Y., Pyo, J.S. and Yokozawa, T. : Increase in the free radical scavenging activity of ginseng by heatprocessing. Biol Pharm Bull. 29(4), 750-4 (2006) https://doi.org/10.1248/bpb.29.750
  33. Sachdev, S. and Davies, K.J. : Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med. Jan 15, 44(2), 215-23 (2008) https://doi.org/10.1016/j.freeradbiomed.2007.07.019
  34. Kim, S.H., Park, K.S., Chang, M.J. and Sung, J.H. : Effects of Panax ginseng extract on exercise-induced oxidative stress. J Sports Med Phys Fitness. 45(2), 178-82 (2005)
  35. Voces, J., Cabral de Oliveira A.C., Prieto, J.G., Vila, L., Perez, A.C., Duarte, I.D. and Alvarez, A.I. : Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats. Braz J Med Biol Res. 37(12), 1863-71 (2004) https://doi.org/10.1590/S0100-879X2004001200012
  36. Taylor, D.L., Edwards, A.D. and Mehmet, H. : Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol. 9, 93-117 (1999) https://doi.org/10.1111/j.1750-3639.1999.tb00213.x
  37. Shah, Z.A., Gilani, R.A., Sharma, P. and Vohora, S.B. : Cerebroprotective effect of Korean ginseng tea against global and focal models of ischemia in rats. J Ethnopharmacol. 3, 101 (1-3), 299-307 (2005) https://doi.org/10.1016/j.jep.2005.05.002
  38. Maffei, Facino R., Carini, M., Aldini, G., Berti, F. and Rossoni, G. : Panax ginseng administration in the rat prevents myocardial ischemia-reperfusion damage induced by hyperbaric oxygen: evidence for an antioxidant intervention. Planta Med. 65(7), 614-9 (1999) https://doi.org/10.1055/s-1999-14034
  39. Xie, J.T., Shao, Z.H., Vanden, Hoek., T.L, Chang, W.T., Li, J., Mehendale, S., Wang, C.Z., Hsu, C.W., Becker, L.B., Yin, J.J. and Yuan, C.S. : Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol. Feb 27; 532(3), 201-7, (2006) https://doi.org/10.1016/j.ejphar.2006.01.001
  40. Stohs, S.J. and Bagchi, D. : Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, Vol. 18, No. 2, pp. 321-336, (1995) https://doi.org/10.1016/0891-5849(94)00159-H
  41. Yazihan, N., Ataoglu, H., Akcil, E., Yener, B., Salman, B. and Aydin, C. : Midkine secretion protects Hep3B cells from cadmium induced cellular damage, World J Gastroenterol; 14(1), 76-80 (2008) https://doi.org/10.3748/wjg.14.76
  42. Lasfer, M., Vadrot, N., Aoudjehane, L., Conti, F., Bringuier, A.F., Feldmann, G. and Reyl-Desmars, F. : Cadmium induces mitochondria-dependent apoptosis of normal human hepatocytes. Cell Biol Toxicol. 24(1), 55-62 (2008) https://doi.org/10.1007/s10565-007-9015-0
  43. Xie, J. and Shaikh, Z.A. : Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factorkappa B activity. Toxicol Sci. 91(1), 299-308 (2006) https://doi.org/10.1093/toxsci/kfj131
  44. Shukla, R. and Kumar, M. : Role of Panax ginseng as an antioxidant after cadmium-induced hepatic injuries. Food Chem Toxicol. 8 (2009) https://doi.org/10.1016/j.fct.2009.01.002
  45. Kahn, S.E. : The relative contributions of insulin resistance and $\beta$-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46, 3-19, (2003) https://doi.org/10.1007/s00125-003-1190-9
  46. Lenzen, S. : Oxidative stress: the vulnerable $\beta$-cell. Biochem. Soc. Trans. 36, 343-347 (2008) https://doi.org/10.1042/BST0360343
  47. Lenzen, S., Drinkgern, J. and Tiedge, M. : Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radical Biol. Med. 20, 463-466 (1996) https://doi.org/10.1016/0891-5849(96)02051-5
  48. Tiedge, M., Lortz, S., Drinkgern, J. and Lenzen, S. : Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46, 1733-1742 (1997) https://doi.org/10.2337/diabetes.46.11.1733
  49. Kim, H.Y. and Kim, K. : Protective Effect of Ginseng on Cytokine-Induced Apoptosis in Pancreatic $\hat{a}$-Cells, J. Agric. Food Chem. 55, 2816-2823 (2007) https://doi.org/10.1021/jf062577r
  50. Newsholme, P., Haber, E.P., Hirabara, S.M., Rebelato, E.L., Procopio, J., Morgan, D., Oliveira-Emilio, H.C., Carpinelli, A.R. and Curi, R. : Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 583, 9-24, (2007) https://doi.org/10.1113/jphysiol.2007.135871
  51. Zhang, C.Y., Baffy, G., Perret, P., Krauss, S., Peroni, O., Grujic, D., Hagen, T., Vidal-Puig, A.J., Boss, O., Kim, Y.B., Zheng, X.X., Wheeler, M.B., Shulman, G.I., Chan, C.B. and Lowell, B.B. : Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell, 105(6), 745-755 (2001) https://doi.org/10.1016/S0092-8674(01)00378-6
  52. Hagen, T. and Vidal-Puig, A. : Mitochondrial uncoupling proteins in human physiology and disease. Minerva Med, 93(1), 41-57 (2002)
  53. Mattson, M.P. and Liu, D. : Mitochondrial potassium channels and uncoupling proteins in synaptic plasticity and neuronal cell death. Biochem Biophys Res Commun, 304(3), 539-549 (2003) https://doi.org/10.1016/S0006-291X(03)00627-2
  54. Rousset, S., Alves-Guerra, MC., Mozo, J., Miroux, B., Cassard- Doulcier, AM., Bouillaud, F. and Ricquier, D. : The biology of mitochondrial uncoupling proteins. Diabetes, 53 Suppl 1:S130-5 (2004) https://doi.org/10.2337/diabetes.53.2007.S130
  55. Langin, D. : The role of uncoupling protein 2 in the development of type 2 diabetes. Drugs Today (Barc), 39(4), 287-295 (2003) https://doi.org/10.1358/dot.2003.39.4.737960
  56. Susin, S.A., Lorenzo, H.K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost M.C., Alzari, P.M. and Kroemer, G. : Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med, 189(2), 381-394 (1999) https://doi.org/10.1084/jem.189.2.381
  57. Luo, J.Z. and Luo, L. : American Ginseng Stimulates Insulin Production and Prevents Apoptosis through Regulation of Uncoupling Protein-2 in Cultured beta Cells. Evid Based Complement Alternat Med, 3(3), 365-372 (2006) https://doi.org/10.1093/ecam/nel026
  58. Wu, Z., Luo, J.Z. and Luo, L. : American ginseng modulates pancreatic beta cell activities Chinese Medicine, 25(2):11 (2007)
  59. Lim, I. S. : The Approach of Antioxidant , Endocrine, & Immune System on Exercise & Aging. Exercise science. 11(1):1226-1726 (2002)
  60. Hall, D.M., Sattler, G.L., Sattler, C.A., Zhang, H.J., Oberley, L.W., Pitot, H.C. and Kregel, K.C. : Aging lowers, steadyslate antioxidant enzyme and stress protein expression in primary (2001) https://doi.org/10.1093/gerona/56.6.B259
  61. Le Bourg, E. : Antioxidants as modulators. In: Rattan SIS (ed) Modulating Aging and Longevity. Biology of Aging and Its Modulation, 5, 183-203. (2003)
  62. Kim, Y.H., Park, K.H. and Rho, H.M. : Transcriptional activation of the Cu,Zn-superoxide dismutase gene through the AP2 site by ginsenoside Rb2 extracted from a medicinal plant, Panax ginseng. J Biol Chem. 4; 271(40), 24539-43 (1996) https://doi.org/10.1074/jbc.271.40.24539
  63. Black, R.A., Rauch, C.T., Kozlosky, C.J., Peschon, J.J., Slack, J.L., Wolfson, M.F., Castner, B.J., Stocking, K.L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K.A., Gerhart, M., Davis, R., Fitzner, J.N., Johnson, R.S., Paxton, R.J., March, C.J. and Cerretti, D.P. : A metalloproteinase disintegrin that releases tumour necrosis factor-alpha from cells, Nature, 385, 729–733 (1997) https://doi.org/10.1038/385729a0
  64. Doedens, J.R. and Black, R.A. : Stimulation-induced downregulation of tumor necrosis factor-alpha converting enzyme, J. Biol. Chem. 275, 14598–14607 (2000) https://doi.org/10.1074/jbc.275.19.14598

Cited by

  1. Suppressive Effects of Defatted Green Tea Seed Ethanol Extract on Cancer Cell Proliferation in HepG2 Cells vol.40, pp.6, 2011, https://doi.org/10.3746/jkfn.2011.40.6.767
  2. Inhibitory Effect of High Temperature- and High Pressure-Treated Red Ginseng on Exercise-Induced Oxidative Stress in ICR Mouse vol.6, pp.3, 2014, https://doi.org/10.3390/nu6031003
  3. Suppressive Effects of Ethyl Acetate Fraction from Green Tea Seed Coats on the Production of Cell Adhesion Molecules and Inflammatory Mediators in Human Umbilical Vein Endothelial Cells vol.40, pp.5, 2011, https://doi.org/10.3746/jkfn.2011.40.5.635