DOI QR코드

DOI QR Code

A Study on the Synthesis and Properties of Additives Coated BaTiO3

첨가제가 Coating된 BaTiO3의 합성 및 특성에 관한 연구

  • Published : 2009.03.31

Abstract

The Powder characteristics and sintering behavior of $SiO_2$ coated $BaTiO_3$ were studied. $BaTiO_3$ powders were synthesized by the liquid mix method developed by Pechini, and silica coating was prepared by alkoxide hydrolysis method with TEOS and ethanol. The particle size of the $BaTiO_3$ powders was 35 nm and the thickness of the $SiO_2$ coating layer was 5 nm. As the $SiO_2$ content increased, the $SiO_2$ layers improved the powder dispersion by increasing electrostatic repulsion between the $BaTiO_3$ particles. Effects of MgO coating on microstructure and dielectric properties of $BaTiO_3$ have been studied compared with mechanically MgO mixed $BaTiO_3$. MgO coated $BaTiO_3$ particles were prepared by a homogeneous precipitation method using $MgCl_2\cdot 6H_2O$ and urea. MgO coated $BaTiO_3$ exhibited homogeneous microstructure compared with mixed samples. XRD analysis revealed that Mg substitution for the Ti site in the MgO mixed sample was much greater than in the coated one. Electrical properties of MgO mixed and coated $BaTiO_3$ were affected by the diffusion behavior of Mg in $BaTiO_3$ lattice.

Keywords

References

  1. A. Beauger, J. C. Mutin, and J.C. Niepce, “Synthesis Reaction of Metatitanate $BaTiO_3$ : Part 2. Study of Solid-solid Reaction Interfaces,” J. Mater. Sci., 18 3543-50 (1983). https://doi.org/10.1007/BF00540726
  2. A. Amin, M. A. Spears, and B.M. Kulwicki, “Reaction of Anatase and Rutile with Barium Carbonate,” J. Am. Ceram. Soc., 66 733-38 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb10540.x
  3. K. S. Mazdiyasni, R. T. Dolloff, and J. S. Smith II, “Preparation of High-purity Submicron Barium Titanate Powders,” J. Am. Ceram. Soc., 52 523-26 (1969). https://doi.org/10.1111/j.1151-2916.1969.tb09157.x
  4. P. P. Phule and S. H. Risbud, “Low Temperature Synthesis and Dielectric Properties of Ceramics Derived from Amorphous Barium Titanate Gels and Crystalline Powders,” Mater. Sci. Eng., B3 241-47 (1989). https://doi.org/10.1016/0921-5107(89)90016-0
  5. M. Wu, R. Xu, S. Feng, L. Li, D. Chen, and Y. Luo, “The Influence of Anions on the Products of $BaTiO_3$ under Hydrothermal Conditions,” J. Mater. Sci., 31 6201-05 (1996). https://doi.org/10.1007/BF00354439
  6. P. Pinceloup, C. Courtois, A. Leriche, and B. Thierry, “Hydrothermal Synthesis of Nanometer-sized Barium Titanate Powders : Control of Barium/titanium Ratio, Sintering, and Dielectric Properties,” J. Am. Ceram. Soc., 82 3049-56 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02201.x
  7. B. S. Rawal, M. Kahn, and W. R. Buessem, “Grain core- Grain Shell Structure in Barium Titanate-based Dielectrics,” Adv. in Ceram., 1 172-88 (1981).
  8. S. K. Chiang, N. E. Lee, and D. W. Ready, “Core-shell Structure in Doped $BaTiO_3$,” Ceram. Bull., 66 1230 (1987).
  9. F. A. Selmi and V. R. W. Amarakoon, “Sol-gel Coating Powders for Processing Electronic Ceramics,” J. Am. Ceram. Soc., 71 934-37 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb07561.x
  10. W. -H. Shih, D. Kisailus, and Y. Wei, “Silica Coating of Barium Titanate Particles,” Mater. Lett., 24 13-15 (1995). https://doi.org/10.1016/0167-577X(95)00061-5
  11. S. F. Wang and G. O. Dayton, “Dielectric Properties of Finegrain Barium Titanate Based X7R Materials,” J. Am. Ceram. Soc., 82 2677-82 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02141.x
  12. B. Aiken, W. P. Hsu, and E. Matijevic, “Preparation and Properties of Uniform Mixed and Coated Colloidal Particles,” J. Mater. Sci., 25 1886-94 (1990). https://doi.org/10.1007/BF01045401
  13. R. D. Harding , “Heterocoagulation in Mixed Dispersions - Effects of Particle Size, Size Ratio, Relative Concentration and Surface Potential of Colloidal Components,” J. Colloid Interface Sci., 40 164-73 (1972). https://doi.org/10.1016/0021-9797(72)90006-9
  14. T. W. Healy, G. R. Wiese, D. W. Yates, and B.V. Kavangh, “Heterocoagulation in Mixed Oxide Colloidal Dispersions,” J. Colloid Interface Sci., 42 [3] 647-49 (1973). https://doi.org/10.1016/0021-9797(73)90051-9
  15. J. H. Jean and S. M. Yang, “$Y_2O_2S$ : Eu Red Phosphor Powders Coated with Silica,” J. Am. Ceram. Soc., 83 1928-34 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01492.x
  16. R. Chen, A. Cui, X. Wang, Z. Gui, and L. Li, “Structure, Sintering Behavior and Dielectric Properties of Silica-coated $BaTiO_3$,” Mat. Lett., 54 314-17 (2002). https://doi.org/10.1016/S0167-577X(01)00584-5
  17. W. J. Kim, Y. T. Moon, C.H. Kim, D.K. Kim, and H. Lee, “Coating of Yttria Precursor on AlN Powder by in Situ Precipitation,” J. Mater. Sci. Lett., 13 1349-51 (1994). https://doi.org/10.1007/BF00624492
  18. C. M. Wang, “Microstructural Homogeneity Improvement in $Si_3N_4$ by a Powder Coating Method,” J. Mater. Sci., 31 4709-18 (1996). https://doi.org/10.1007/BF00366374
  19. B. Djuricic, D. Mcgarry, and S. Pickering, “The Preparation of Ultrafine Ceria-stabilized Zirconia Particles Coated with Yittria,” J. Mater. Sci. Lett., 12 1320-23 (1993). https://doi.org/10.1007/BF00506350
  20. D. H. Pearce, A. J. Jickells, and C. B. Ponton, in : P. Duran, J. F. Fernandez (Eds.), Vol.1, pp.231-36, Third Euro-Ceramics, Faenza Editrice, Iberica, Madrid, 1993.
  21. F. A. Selmi and V. R. W. Amarakoon, “Sol-Gel Coating of Powders for Processing Electronic Ceramics”, J. Am. Ceram. Soc., 71 934-37 (1988). https://doi.org/10.1111/j.1151-2916.1988.tb07561.x
  22. Y. Ogata, Patent No. JP 0558705, 09.03.1993/29.08.1991, CI C01B35/00
  23. Patent No. JP 0558605, 09.03.1993/29.08.1991, CI C01B13/32.
  24. H. -P. Abicht, H. T. Langhammer, and K. -H. Felgner, “The Influence of Silicon on Microstructure and Electrical Properties of La-doped $BaTiO_3$ Ceramics,” J. Mater. Sci., 26 2337-42 (1991). https://doi.org/10.1007/BF01130178
  25. C. Saucy, I. M. Reaney, and A. J. Bell, “Microstructure and Electromechanical Properties of $BaTiO_3$-$ZrO_2$ Core–shell Ceramics,” Br. Ceram. Proc., 51 31-52 (1993).
  26. T. Hayashi, T. Itoh, K. Ajima, and K. Sasaki, “Preparation and Properties of $Nb_2O_5$-coated $BaTiO-3$ Composite Particles by Metal Alkoxide Method,” J. Jpn. Soc. Powder and Powder Metallurgy, 42 1037 (1995). https://doi.org/10.2497/jjspm.42.1037
  27. L. Borum and O. C. Wilson Jr, “Surface Modification of Hydroxyapatite. Part. Silica,” Biomaterials, 24 3681-88 (2003). https://doi.org/10.1016/S0142-9612(03)00240-0
  28. E. Matijevi$\ae$, “Uniform Inorganic Colloid Dispersions. Achievements and Challenges”, Langmuir, 10 8-16 (1994). https://doi.org/10.1021/la00013a003
  29. F. Caruso, “Nano Engineering of Particle Surfaces,” Adv. Mater., 13 11-22 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  30. L. M. Liz-Marzan, M. Giersig, and P. Mulvaney, “Synthesis of Nanosized Gold-silica Core-shell Particles,” Langmuir, 12 4329-35 (1996). https://doi.org/10.1021/la9601871
  31. M. Ohmori and E. Matijevic, “Preparation and Properties of Uniform Coated Inorganic Colloidal Particles : Silica on Iron,” J. Colloid Interface Sci., 160 288-92 (1993). https://doi.org/10.1006/jcis.1993.1398
  32. R. K. Iler, US Patent No. 2 885 366 1959.
  33. N. Kawahashi and E. Matijevic, “Preparation of Hollow Spherical-particles of Yitrium Compounds”, J. Colloid Interface Sci., 143 103-10 (1991). https://doi.org/10.1016/0021-9797(91)90442-B
  34. N. Kawahashi and E. Matijevic, “Preparation and Properties of Uniform Coated Colloidal Particles,” J. Colloid Interface Sci., 138 534-42 (1990). https://doi.org/10.1016/0021-9797(90)90235-G
  35. M. Ohmori and E. Matijevic, “Preparation and Properties of Uniform Coated Colloidal Particles. VII. Silica on Hematite,” J. Colloid Interface Sci., 150 594-98 (1992). https://doi.org/10.1016/0021-9797(92)90229-F
  36. H. Giesche and E. Matijevic, “Preparation, Characterization, and Sinterability of Well Defined Silica/yttria Powders,” J. Mater. Res., 9 436-50 (1994). https://doi.org/10.1557/JMR.1994.0436
  37. A. Hanprasopwattana, S. Srinivasan, A. G. Sault, and A. K. Datye, “Titania Coatings on Monodisperse Silica Spheres (Characterization Using 2-propanol Dehydration and TEM),” Langmuir, 12 3173-79 (1996). https://doi.org/10.1021/la950808a
  38. X. C. Guo and P. Dong, “Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanoparticles,” Langmuir, 15 5535-40 (1999). https://doi.org/10.1021/la990220u
  39. Q. Liu, Z. Xu, J. A. Finch, and R. Egerton, “A Novel Twostep Silica Coating Process for Engineering Magnetic Nanocomposites,” Chem. Mater., 10 3936-40 (1998). https://doi.org/10.1021/cm980370a
  40. L. M. Liz-Marzan and A. P. Philipse, “Synthesis and Optical Properties of Gold-labeled Silica Particles,” J. Colloid Interface Sci., 176 459-66 (1995). https://doi.org/10.1006/jcis.1995.9945
  41. T. Ung, L. M. Liz-Marzan, and P. Mulvaney, “Controlled Method for Silica Coating of Silver Colloids : Influence of Coating on the Rate of Chemical Reactions,” Langmuir, 14 3740-48 (1998). https://doi.org/10.1021/la980047m
  42. T. Ung, L. M. Liz-Marzan, and P. Mulvaney, “Redox Catalysis Using Ag@$SiO_2$ Colloids,” J. Phys. Chem., B103 6770-73 (1999). https://doi.org/10.1021/jp991111r
  43. M. P. B. van Bruggen, “Preparation and Properties of Colloidal Core-shell Rods with Adjustable Aspect Ratios,” Langmuir, 14 2245-55 (1998). https://doi.org/10.1021/la971175y
  44. S. R. Hall, S. A. Davis, and S. Mann, “Co-condensation of Organosilica Hybrid Shells on Nanoparticle Templates : a Direct Synthetic Route to Functionalized Core-shell Colloids,” Langmuir, 16 1454-56 (2000). https://doi.org/10.1021/la9909143
  45. I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, “One-pot Synthesis of Ag-TiO2 Core-shell Nanoparticles and Their Layerby- layer Assembly,” Langmuir, 16 2731-35 (2000). https://doi.org/10.1021/la991212g
  46. V. V. Hardikar and E. Matijevic, “Coating of Nanosize Silver Particles with Silica”, J. Colloid Interface Sci., 221 133-36 (2000). https://doi.org/10.1006/jcis.1999.6579
  47. R. Partch, Y. Xie, S. T. Oyama, and E. Matijevic, “Preparation and Properties of Uniform Coated Colloidal Particles. Viii. Titanium Nitride on Silica,” J. Mater. Res., 8 2014-18 (1993). https://doi.org/10.1557/JMR.1993.2014
  48. D. Walsh and S. Mann, “Fabrication of Hollow Porous Shells of Calcium Carbonate from Self-organizing Media,” Nature, 377 320-23 (1995). https://doi.org/10.1038/377320a0
  49. A. M. Puertas, A. F. Barbero, and F. J. Nieves, “Induced asymmetries in the Heteroaggregation of Oppositely Charged Colloidal Particles”, J. Colloid and Interface Science, 265 36-43 (2003). https://doi.org/10.1016/S0021-9797(03)00349-7
  50. A. M. Islam, B. Z. Chowdhry, and M. J. Snowden, “Heteroaggregation in Colloidal Dispersions,” Adv. Colloid and Interface Science, 62 109-36 (1995). https://doi.org/10.1016/0001-8686(95)00276-V
  51. A. M. Homola, M. R. Lorenz, C. J. Mastrangelo, and D. L. Tilbury, “Novel Magnetic Dispersions Using Silica Stabilized Particles,” IEEE Trans. Magn., 22 716-19 (1986). https://doi.org/10.1109/TMAG.1986.1064535
  52. A. M. Homola, M. R. Lorenz, H. Sussner, and S. L. Rice, “Ultrathin Particulate Magnetic Recording Media,” J. Appl. Phys., 61 3898-901 (1986). https://doi.org/10.1109/20.45317
  53. A. M. Homola and S. L. Rice, US Patent [4] 280 918 (1981).
  54. W. P. Hsu, R. Yu, and E. Matijevic, “Preparation and Characterization of. Uniform Particles of Pure and Coated Metallic Copper,” Powder Technol., 63 265-75 (1990). https://doi.org/10.1016/0032-5910(90)80052-Z
  55. F. Porta, W. P. Hsu, and E. Matijevic, “Preparation of Uniform Colloidal Metallic. Ruthenium and its Compounds,” Colloids Surf., 46 63-74 (1990). https://doi.org/10.1016/0166-6622(90)80048-9
  56. S. W. Keller, S. A. Johnson, E. S. Brigham, E. H. Yonemoto, and T. E. Mallouk, “Photoinduced Charge Separation in Multilayer Thin Films Grown by Sequential Adsorption of Polyelectrolytes,” J. Am. Chem. Soc., 117 12879-80 (1995). https://doi.org/10.1021/ja00156a034
  57. R. Hogg, T. W. Healy, and D. W. Fuerstenau, “Mutual Coagulation of Colloidal Dispersions,” Trans Faraday Soc., 62 1638-51 (1966). https://doi.org/10.1039/tf9666201638
  58. K. Furusawa and O. D. Velev, “Electrokinetic Behavior in Synthetic Process of Composite Particles,” Colloids and Surfaces, A159 359-71 (1999). https://doi.org/10.1016/S0927-7757(99)00272-1
  59. R. Chen, A. Cui, X. Wang, Z. Gui, and L. Li, “Structure, Sintering Behavior and Dielectric Properties of Silica-coated $BaTiO_3$,” Mat. Lett., 54 314-17 (2002). https://doi.org/10.1016/S0167-577X(01)00584-5
  60. S. Senz, A. Graff, W. Blum, D. Hesse, and H.P. Abicht, “Orientation Relationship of Reactively Grown $Ba_6Ti_{17}O_{40}$ and $Ba_2TiSi_2O_8$ on $BaTiO_3$ (001) Determined by X-ray Diffractometry,” J. Am. Ceram. Soc., 81 1317-21 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02484.x
  61. S. V. Krishnan and I. Iwasaki, “Floc Formation in Quartz- Mg(OH)_2$ System,” Colloids and Surfaces, 15 89-100 (1985). https://doi.org/10.1016/0166-6622(85)80058-5
  62. S. S. Dukhin, J. Yang, R. N. Dave, and R. Pfeffer, “Deactivated Sintering by Particle Coating : The Significance of Static and Dynamic Surface Phenomena,” Colloids Surf., A235 83-99 (2004). https://doi.org/10.1016/j.colsurfa.2004.01.006
  63. J. Pan, H. Le, S.Kucherenko, and J. A. Yeomans, “A Model for the Sintering of Spherical Particles of Different Sizes,” Acta Mater., 46 4671-90 (1998). https://doi.org/10.1016/S1359-6454(98)00144-X
  64. K. Darcovich, L. Bera, and K. Shinagawa, “Particle Size Distribution Effects in an FEM Model of Sintering Porous Ceramics,” Mat. Sci. Eng., A341 247-55 (2003). https://doi.org/10.1016/S0921-5093(02)00237-X
  65. D. Hennings and G. Rosenstein, “Temperature-stable Based Chemically Inhomogeneous $BaTiO_3$,” J. Am. Ceram. Soc., 67 249-54 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb18841.x
  66. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed., Wiley, New York, 1976.
  67. D. A. Payne, L. E. Cross, in: Fulrath, R. M., and Park, J. A., “Microstructure-Property Relations for Dielectric Ceramics: Ceramic Microstructure,” Westview Press, Boulder, 1977.

Cited by

  1. Dielectric properties and microstructures for various MLCCs coated with additives vol.63, pp.12, 2013, https://doi.org/10.3938/jkps.63.2287
  2. Enhancement of the crystallinity of barium titanate by using a uniform barium-carbonate surface coating vol.70, pp.9, 2017, https://doi.org/10.3938/jkps.70.861