An empirical study on the selection of the optimal covariance pattern model for the weight loss data

체중감량자료에 대한 적정 공분산형태모형 산출에 관한 실증연구

  • Jo, Jin-Nam (Department of Data Information Science, Dongduk Women's University)
  • 조진남 (동덕여자대학교 정보대학 데이터정보)
  • Published : 2009.03.31

Abstract

Twenty five female students in Seoul participated and were divided into two group in the experiment of weight loss effect of two treatments. Fourteen students(Treatment A group), randomly chosen from the students, had fed on diet foods and exercised over 8 weeks, and the remaining students(Treatment B group) had fed on diet foods only for the same periods. Weights of 25 students had been measured repeatedly four times at an interval of two weeks during 8 weeks, It resulted from mixed model analysis of repeated measurements data that separate Toeplitz pattern for each treatment group was selected as the optimal covariance pattern. Based upon the optimal covariance pattern model, the baseline effect and time effect were found to be highly significant, but the treatment-time interaction effect was found to be insignificant. Finally, the students with diet foods and exercises were more effective in losing weight than the students with only diet foods were.

서울시에 거주하는 25명의 여대생을 대상으로 식이요법에 대한 체중감량 효과를 비교하고자 식이요법과 운동을 병행하는 그룹과 식이요법만 실시하는 그룹으로 나누어서, 8주간에 걸쳐서 2주 간격으로 측정을 실시하여 각 그룹별로 4회 반복측정실험자료를 얻었다. 이 실험자료를 바탕으로 반복측정에 관한 혼합모형을 이용하여 분석한 결과 처리별 Toeplitz 공분산형태가 가장 적절한 모형으로 선택되었다. 처리별 Toeplitz 공분산형태를 가정하여 분석한 결과, 식이요법 이전의 체중값과 시간의 차이에 따른 효과는 대단히 유의하지만, 처리와 시간 간의 교호작용은 유의하지 않은 것으로 나타났으며, 식이요법과 운동을 병행한 그룹의 학생들이 식이요법만 섭취한 그룹의 학생들보다 좀더 효과적인 체중감량의 효과가 있었음이 판명되었다.

Keywords

References

  1. 장은재, 조진남, 황종현 1997. 한국 여대생의 체지방 측정을 통한 측정기기들 간의 비교 연구. <한국식품영양과학회지>, 26, 514-520.
  2. 장은재, 임경아, 한용봉 (1999). 영양교육이 체중조절 프로그램에 미치는 효과에 관한연구. < 한국식품영양학회지>, 12, 177-183.
  3. Brown, H. and Kempton, R. A. (1994). The application of REMLin clinical trials. Statistics in Medicine, 16, 1601-1617.
  4. Brown, H. and Prescott, R. (1999). Applied mixed models in medicine, John Wiley & Sons Inc, New York.
  5. Diggle, P. J. (1989). Testing for random dropouts in repeated measurement data. Biometrics, 43, 1255-1258.
  6. Fitzmaurice, G. M., Laird, N. M. and Ware, J. H. (2004). Applied longitudinal analysis, John Wiley & Sons Inc, New York.
  7. Hand, D. and Crowder, M. (1996). Practical longitudinal data analysis, Chapman & Hall, London.
  8. Hartley, H. O. and Rao, J. N. K. (1967). Maximum likelihood estimation for the mixed analysis of variance model. Biometrika, 54, 93-108. https://doi.org/10.1093/biomet/54.1-2.93
  9. Hinkelman, K. and Kempthorne, O. (1994). Design and analysis of experimenrts, Vol. 1, John Wiley & Sons Inc, New York.
  10. Littell, R. C., Milliken, G. A., Stroup, W. W. and Wol nger, R. D. (1996). SAS system for mixed Models, SAS Institute Inc., N.C., U.S.A.
  11. Longford, N. T. (1993). Random coeffcient models, Oxford University Press, Oxford.
  12. Rao, C. R. (1971). Estimation of variance and covariance components-MINQUE theory. Journal of Multivariate Analysis, 1, 257-275. https://doi.org/10.1016/0047-259X(71)90001-7
  13. Rao, C. R. (1972). Estimation of variance and covariance components in linear models. Journal of the American Statistical Association, 67, 112-117. https://doi.org/10.2307/2284708
  14. Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2, 110-114. https://doi.org/10.2307/3002019
  15. Verbeke, G. and Molenberghs, G. (2000). Linear mixed models for longitudinal data, Springer Verlag, New York.