Abstract
This paper suggests a new algorithm automatically searching for Region-of-Interest(ROI) with high speed, using the edge information of high frequency subband transformed with wavelet. The proposed method executes a searching algorithm of 4-direction object boundary by the unit of block using the edge information, and detects ROIs. The whole image is splitted by $64{\times}64$ or $32{\times}32$ sized blocks and the blocks can be ROI block or background block according to taking the edges or not. The 4-directions searche the image from the outside to the center and the algorithm uses a feature that the low-DOF image has some edges as one goes to center. After searching all the edges, the method regards the inner blocks of the edges as ROI, and makes the ROI masks and sends them to server. This is one of the dynamic ROI method. The existing methods have had some problems of complicated filtering and region merge, but this method improved considerably the problems. Also, it was possible to apply to an application requiring real-time processing caused by the process of the unit of block.
본 논문에서는 웨이블릿 변환 된 고주파 서브밴드들의 에지 정보를 이용하여 관심 객체 영역을 고속으로 자동 검출해주는 새로운 알고리즘을 제안하였다. 제안된 방법에서는 에지정보를 이용하여 블록단위의 4-방향 객체 윤곽탐색 알고리즘(4-DOBS)을 수행하여 관심객체를 검출한다. 전체 이미지는 $64{\times}64$또는 $32{\times}32$ 크기의 코드 블록으로 먼저 나누어지고, 각 코드 블록 내에 에지들이 있는지 없는지에 따라 관심 코드블록 또는 배경이 된다. 4-방향은 바깥쪽에서 이미지의 중앙으로 탐색하고, 피사계 심도가 낮은 이미지는 중앙으로 갈수록 에지가 발견된다는 특징을 이용한다. 에지를 모두 발견하면 내부의 이미지 블록은 모두 관심영역으로 간주하고, 이 블록들은 빠르게 마스킹되어 서버로 전송되어 동적 ROI를 제공한다. 이는 기존 방법들의 문제점이였던 복잡한 필터링 과정과 영역병합 문제로 인한 높은 계산 복잡도를 상당히 개선시킬 수 있었고, 블록 단위의 처리로 인하여 실시간 처리를 요하는 응용에서도 적용 가능하였다.