Abstract
ADESS(Adverse drug event surveillance system) is the system which distinguishes adverse drug events using adverse drug signals. This system shows superior effectiveness in adverse drug surveillance than current methods such as volunteer reporting or char review. In this study, we built clinical data mart(CDM) for the development of ADESS. This CDM could obtain data reliability by applying data quality management and the most suitable clustering number(n=4) was gained through the reproducibility assessment in unsupervised learning techniques of knowledge discovery. As the result of analysis, by applying the clustering number(N=4) K-means, Kohonen, and two-step clustering models were produced and we confirmed that the K-means algorithm makes the most closest clustering to the result of adverse drug events.
약물부작용감시시스템 (Adverse drug event surveillance system)은 약물부작용신호를 이용하여 약물의 부작용 여부를 식별하는 시스템이다. 기존의 자발적 보고나 차트리뷰 보다 효율성이 뛰어난 시스템으로 분류할 수 있다. 본 논문에서는 약물부작용감시시스템을 구현하기 위하여 임상데이터마트(GDM)를 구축하였다. 특히, 데이터 품질관리 기법을 적용하여 구축된 CDM에 지식 탐사 기법 중 비교사학습 기법으로 적용하여 모델의 재현성을 평가하여 최적의 약물부작용 군집화 개수(n=4)를 도출하였다. 군집화 개수(n=4)를 이용하여 약물부작용 판별을 위한 K-means, Kohonen, two-step clustering model 알고리즘에 적용하여 분석함으로써 K-means 알고리즘이 가장 우수한 군집 효과를 나타냄을 확인하였다.