바이오매스 유래의 저해물질이 에탄올 생산에 미치는 영향

Effect of Biomass-derived Inhibitors on Ethanol Production

  • 이명구 (광운대학교 화학공학과) ;
  • 조대행 (광운대학교 화학공학과) ;
  • 김용환 (광운대학교 화학공학과) ;
  • 이진원 (서강대학교 화공생명공학과) ;
  • 이종호 (고려대학교 화공생명공학과) ;
  • 김승욱 (고려대학교 화공생명공학과) ;
  • 조재훈 (한국생산기술연구원 그린공정연구부) ;
  • 이도훈 (한국생산기술연구원 그린공정연구부) ;
  • 김상용 (한국생산기술연구원 그린공정연구부) ;
  • 박철환 (광운대학교 화학공학과)
  • Lee, Myung-Gu (Department of Chemical Engineering, Kwangwoon University) ;
  • Cho, Dae-Haeng (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University) ;
  • Cho, Jae-Hoon (Green Process R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Do-Hoon (Green Process R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Sang-Yong (Green Process R&D Department, Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University)
  • 발행 : 2009.10.29

초록

목질계 바이오매스 전처리시 발생하는 저해물질로써 퓨란류, 유기산류, 페놀류를 포함한 발효에 있어, S. cerevisiae K35와 P. stipitis KCCM 12009가 에탄올 생산에 미치는 영향을 중심으로 연구를 수행하였다. 본 연구에 사용된 두 균주 모두 24시간 내에 100 g/L의 glucose를 모두 소비하였으며, 40 g/L 이상의 에탄올을 생산하였다. 저해물질로 퓨란 (5-HMF, furfural)류가 1-2 g/L 존재시, S. cerevisiae K35는 furfural에 비해 5-HMF에 의한 저해영향을 높았으며, P. stipitis KCCM 12009는 그와 반대의 경향을 보였다. Acetate가 5 g/L 이상 존재하는 경우, S. cerevisiae K35와 P. stipitis KCCM 12009 두 균주 모두에 균체량 및 에탄올 생산에 대한 저해정도가 가장 높았다. 또한, 페놀류 (syringaldehyde, vanillic acid, syringic acid)가 각각 1-2 g/L 존재시, S. cerevisiae K35는 비교적 적은 세포성장 저해영향과 소량 증가하는 에탄올 생산량을 보인 반면, P. stipitis KCCM 12009는 전반적으로 S. cerevisiae K35의 세포성장과 에탄올 생산에 있어 유사한 경향을 보였으나, syringaldehyde와 vanillic acid가 2 g/L 존재시에는 24시간에 균생장이 급격히 감소함과 동시에 에탄올 생산량도 감소함을 보였고, 48시간 배양 후 저해물질의 영향에서 벗어나 정상적인 세포성장과 에탄올을 생산하는 경향을 보였다. S. cerevisiae K35와 P. stipitis KCCM 12009에 동일한 농도의 저해물질이 존재시 저해영향의 차이를 보이는 것은 균주 자체의 특성 차이로 인한 저해물질에 대한 민감도를 나타내는 것으로 보인다. 본 연구를 통해 두 균주를 이용한 바이오에탄올 생산시 발생되는 저해물질의 농도별 선택적 특이성을 확인할 수 있었으며, 이를 통해 목질계 바이오매스 전처리시 발생되는 저해물질의 적정농도를 확인할 수 있었다.

The process for ethanol production requires lignocellulosic biomass to be hydrolyzed to generate monomeric sugars for the fermentation. During hydrolysis step, a monomeric sugars and a broad range of inhibitory compounds (furan derivatives, weak acids, phenolics) are formed and released. In this study, we investigated the effects of inhibitory compounds on the fermentative performance of Saccharomyces cerevisiae K35 and Pichia stipitis KCCM 12009 in ethanol production, two yeast strains were fermented in the synthetic medium including six inhibitory compounds such as 5-hydroxymethylfurfura (5-HMF), furfural, acetic acid, syringaldehyde, vanillic acid and syringic acid. Ethanol of over 40 g/L was produced by two yeast strains in the absence of inhibitory compounds, respectively. Most inhibitory compounds except acetic acid had a little effect on the ethanol production, but acetic acid showed high inhibition effect on the cell growth and ethanol production.

키워드

참고문헌

  1. Wingren, A., M. Galbe, and G. Zacchi (2003) Technoeconomic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Progr. 19: 1109-1117 https://doi.org/10.1021/bp0340180
  2. Larsson, S., A. Reimann, N. Nilvebrant, and L. J. Jonsson (1999) Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce. Appl. Biochem. Biotech. 77: 91-103 https://doi.org/10.1385/ABAB:77:1-3:91
  3. Nilvebrant, N. O., P. Persson, A. Reimann, F. D. Sousa, L. Gorton, and L. J. Jonsson (2003) Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl. Biochem. Biotech. 105-108: 615-628 https://doi.org/10.1385/ABAB:107:1-3:615
  4. Jonsson, L. J., E. Palmqvist, N. O. Nilvebrant, and B. Hahn-Hagerdal (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl. Microbiol. Biot. 49: 691-697 https://doi.org/10.1007/s002530051233
  5. Klinke, H. B., L. Olsson, A. B. Thomsen, and B. K. Ahring (2003) Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol. Bioeng. 81: 738-747 https://doi.org/10.1002/bit.10523
  6. Martin, C., F. Wahlbom, M. Galbe, L. J. Jonsson, and B. Hahn-Hagerdal (2001) Preparation of sugarcane bagasse hydrolysates for alcoholic fermentation by yeasts, 6th Brazilian Symposium on the Chemistry of Lignins and Other Wood Components. pp. 361-367. Brazil
  7. Ohgren, K., A. Rudolf, M. Galbe, and G. Zacchi (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenerg. 30: 863-869 https://doi.org/10.1016/j.biombioe.2006.02.002
  8. Almeida, J. R. M., T. Modig, A. Petersson, B. Hahn- Hagerdal, G. Liden, and M. F. Gorwa-Grauslund (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biot. 82: 340-349 https://doi.org/10.1002/jctb.1676
  9. Pitkanen, J. P., E. Rintala, A. Aristidou, L. Ruohonen, and M. Penttila (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl. Microbiol. Biot. 67: 827-837 https://doi.org/10.1007/s00253-004-1798-9
  10. Sommer, P. (1998) Conversion of Hemicellulose and D-xylose into Ethanol by the Use of Thermophilic Anaerobic Bacteria. Ph. D. Dissertation. Denmar Technical University, Copenhagen, Denmark
  11. Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl. Microbiol. Biot. 57: 631-638 https://doi.org/10.1007/s002530100825
  12. Zaldivar, J. and L. O. Ingram (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66: 203-210 https://doi.org/10.1002/(SICI)1097-0290(1999)66:4<203::AID-BIT1>3.0.CO;2-#
  13. Dunlop, A. P. (1948) Furfural formation and behavior. Ind. Eng. Chem. Res. 40: 204-209 https://doi.org/10.1021/ie50458a006
  14. Ulbricht, R. J., S. J. Northup, and J. A. Thomas (1984) A review of 5 hydroxymethylfurfural (HMF) in parenteral solutions. Fund. Appl. Toxicol. 4: 843-853 https://doi.org/10.1016/0272-0590(84)90106-4
  15. Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, G. Zacchi, and N-O. Nilvebrant (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Tech. 24: 151-159 https://doi.org/10.1016/S0141-0229(98)00101-X
  16. Eklund, T. (1983) The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J. Appl. Bacteriol. 54: 383-389 https://doi.org/10.1111/j.1365-2672.1983.tb02632.x
  17. Banerjee, N., R. Bhatnagar, and L. Viswanathan (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. European J. Appl. Microbiol. Biotech. 11: 226-228 https://doi.org/10.1007/BF00505872
  18. Palmqvist, E., J. Almeida, and B. Hahn-Hagerdal (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62: 447-454 https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<447::AID-BIT7>3.0.CO;2-0
  19. Delgenes, J. P., R. Moletta, and J. M. Navarro (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Tech. 19: 220-225 https://doi.org/10.1016/0141-0229(95)00237-5
  20. Taherzadeh, M. J., L. Gustafsson, C. Niklasson, and G. Liden (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biot. 53: 701-708 https://doi.org/10.1007/s002530000328
  21. Keating, J. D., C. Panganiban, and S. D. Mansfield (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206 https://doi.org/10.1002/bit.20838
  22. Ando, S., I. Arai, K. Kiyoto, and S. Hanai (1986) Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J. Ferment. Tech. 64: 567-570 https://doi.org/10.1016/0385-6380(86)90084-1