3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study

지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구

  • Lee, Bum-Han (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung-Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 이범한 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Published : 2009.12.30

Abstract

We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.

지표-지각환경을 구성하는 지질매체의 구조와 성질의 정량적-체계적 이해를 위한 예비연구로, 매질을 구성하는 입자의 모양, 크기, 충전 밀도가 공극 구조의 특성과 매질의 성질에 미치는 영향을 알아보기 위해 입자의 모양이 구형인 글래스 비드와 모양이 불규칙한 실리카 젤을 이용하여 입자 크기와 공극률이 서로 다른 다양한 다공성 매질을 준비하였고, 핵자기공명 현미영상을 이용하여 약 $50\;{\mu}m$의 분해능으로 삼차원 영상을 획득하였다. 분석 결과, 지름 약 0.2~1.3 mm 크기의 입자로 구성된 다공성 매질의 비표면적은 2.5부터 $9.6\;mm^2/mm^3$, 공극률은 0.21에서 0.38, 투수율은 11.6에서 892.3 D이며, 이는 일반적인 미고결 샌드가 갖는 값의 범위에 해당된다. 비표면적, 공극률, 투수율의 관계는 Kozeny 식에서 예상된 경향과 비교적 일치하였다. 상자집계 프랙탈 차원은 공극률, 비표면적과의 관련성이 높으며, 공극률이 0.29~0.38일 때 비표면적이 약 2.5부터 $6.0\;mm^2/mm^3$까지 증가할수록 프랙탈 차원이 2.6에서 3.0까지 선형으로 증가하며, 공극률이 0.21~0.28일 때 비표면적이 약 2.5부터 $9.6\;mm^2/mm^3$까지 증가할수록 프랙탈 차원이 2.5에서 3.0까지 선형으로 증가한다. 실제 다공성 사암에 포함된 유체의 삼차원 구조를 핵자기공명 현미영상으로 영상화하였고, 이에 대한 비표면적은 $0.33\;mm^2/mm^3$, 공극률은 0.017, 투수율은 30.9 mD, 상자 집계 프랙탈 차원은 1.59로 계산되었다. 본 연구에서 제시된 것과 같이 핵자기공명 현미영상은 다양한 다공성 매질의 삼차원 공극 구조를 영상화할 수 있고, 삼차원 공극 구조에 대한 상자집계 프랙탈 차원은 본 연구에서와 같이 다양한 공극 구조에 대해 분석이 가능하며, 다공성 매질의 이동 특성을 나타내는 매개 변수들과 지진파 감쇠 등에 대한 조절 인자로 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Anderson, A.N., Crawford, J.W., and McBratney, A.B. (2000) On diffusion in fractal soil structures. Soil Sci. Soc. Am. J., 64, 19-24 https://doi.org/10.2136/sssaj2000.64119x
  2. Avnir, D., Farin, D., and Pfeifer, P. (1985) Surface geometric irregularity of particulate materials: The fractal approach. J. Colloid Interf. Sci., 103, 112-123 https://doi.org/10.1016/0021-9797(85)90082-7
  3. Balcom, B.J., Barrita, J.C., Choi, C., Beyea, S.D., Goodyear, D.J., and Bremner, T.W. (2003) Singlepoint magnetic resonance imaging (MRI) of cement based materials. Mater. Struct., 36, 166-182 https://doi.org/10.1007/BF02479555
  4. Barrett, E.P., Joyner, L.G., and Halenda, P.P. (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc., 73, 373-380 https://doi.org/10.1021/ja01145a126
  5. Bartoli, F., Bird, N.R.A., Gomendy, V., Vivier, H., and Niquet, S. (1999) The relation between silty soil structures and their mercury porosimetry curve counterparts: fractals and percolation. Eur. J. Soil Sci., 50, 9-22 https://doi.org/10.1046/j.1365-2389.1999.00209.x
  6. Baumann, T. and Werth, C.J. (2005) Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging. Colloid. Surface. A, 265, 2-10 https://doi.org/10.1016/j.colsurfa.2004.11.052
  7. Bear, J. (1972) Dynamics of Fluids in Porous Media. American Elsevier, New York, 764p
  8. Beard, D.C. and Weyl, P.K. (1973) Influence of texture on porosity and permeability of unconsolidated sand. Am. Assoc. Pet. Geol. Bull., 57, 349-369
  9. Becker, M.W., Pelc, M., Mazurchuk, R.V., and Spernyak, J. (2003) Magnetic resonance imaging of dense and light non-aqueous phase liquid in a rock fracture. Geophys. Res. Lett., 30, 1646 https://doi.org/10.1029/2003GL017375
  10. Berryman, J.G. and Blair, S.C. (1986) Use of digital image analysis to estimate fluid permeability of porous materials: Application of two-point correlation functions. J. Appl. Phys., 60, 1930-1938 https://doi.org/10.1063/1.337245
  11. Bird, N., Diaz, M.C., Saa, A., and Tarquis, A.M. (2006) Fractal and multifractal analysis of pore-scale images of soil. J. Hydro., 322, 211-219 https://doi.org/10.1016/j.jhydrol.2005.02.039
  12. Blumich, B. (2000) NMR Imaging of Materials. Clarendon Press, Oxford, 541p
  13. Callaghan, P.T. (1991) Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford, 492p
  14. Chen, S., and Doolen, G.D. (1998) Lattice Boltzmann Method for Fluid Flows. Ann. Rev. Fluid Mech., 30, 329-364 https://doi.org/10.1146/annurev.fluid.30.1.329
  15. Chen, S., Yao, X., Qiao, J., and Watson, A.T. (1995) Characterization of fractured permeable porous media using relaxation-weighted imaging techniques. Magn. Reson. Imaging, 13, 599-606 https://doi.org/10.1016/0730-725X(95)00013-7
  16. Chopard, B. and Masselot, A. (1999) Cellular automata and lattice Boltzmann methods: a new approach to computational fluid dynamics and particle transport. Future Gener. Comp. Sys., 16, 249-257 https://doi.org/10.1016/S0167-739X(99)00050-3
  17. Chu, Y.J., Werth, C.J., Valocchi, A.J., Yoon, H., and Webb, A.G. (2004) Magnetic resonance imaging of nonaqueous phase liquid during soil vapor extraction in heterogeneous porous media. J. Cont. Hydro., 73, 15-37 https://doi.org/10.1016/j.jconhyd.2003.12.003
  18. Cohen, M.H. and Mendelson, K.S. (1982) Nuclear magnetic relaxation and the internal geometry of sedimentary rocks. J. Appl. Phys., 53, 1127-1135 https://doi.org/10.1063/1.330526
  19. Collins, R.E. (1961) Flow of fluids through porous materials. Penn Well Books, Tulsa, 270p
  20. Crawford, J.W. and Matsui, N. (1996) Heterogeneity of the pore and solid volume of soil: distinguishing a fractal space from its non-fractal complement. Geoderma, 73, 183-195 https://doi.org/10.1016/0016-7061(96)00045-6
  21. Dathe, A. and Thullner, M. (2005) The relationship between fractal properties of solid matrix and pore space in porous media. Geoderma, 129, 279-290 https://doi.org/10.1016/j.geoderma.2005.01.003
  22. Davies, S., Hardwick, A., Robert, D., Spowage, K., and Packer, K.J. (1994) Quantification of oil and water in preserved reservoir rock by NMR spectroscopy and imaging. Magn. Reson. Imaging, 12, 349-353 https://doi.org/10.1016/0730-725X(94)91554-7
  23. Dereppe, J.M., Moreaux, C., and Schenker, K. (1991) Chemical shift imaging of fluid filled porous rocks. Magn. Reson. Imaging, 9, 809-813 https://doi.org/10.1016/0730-725X(91)90380-5
  24. Dijk, P., Berkowitz, B., and Bendel, P. (1999) Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI). Water Resour. Res., 35, 347-360 https://doi.org/10.1029/1998WR900044
  25. Dijk, P.E., Berkowitz, B., and Yechieli, Y. (2002) Measurement and analysis of dissolution patterns in rock fractures. Water Resour. Res., 38
  26. Doughty, D.A. and Tomutsa, L. (1996) Multinuclear NMR microscopy of two-phase fluid systems in porous rock. Magn. Reson. Imaging, 14, 869-873 https://doi.org/10.1016/S0730-725X(96)00218-4
  27. Dullien, F.A.L. (1979) Porous Media: Fluid Transport and Pore Structure. Academic Press, London, 396p
  28. Faure, P., Care, S., Po, C., and Rodts, S. (2005) An MRI-SPI and NMR relaxation study of drying-hydration coupling effect on microstructure of cement-based materials at early age. Magn. Reson. Imaging, 23, 311-314 https://doi.org/10.1016/j.mri.2004.11.034
  29. Foroutan-pour, K., Dutilleul, P., and Smith, D.L. (1999) Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comp., 105, 195-210 https://doi.org/10.1016/S0096-3003(98)10096-6
  30. Fredrich, J.T., DiGiovanni, A.A., and Noble, D.R. (2006)Predicting macroscopic transport properties using microscopic image data. J. Geophys. Res. 111, B03201 https://doi.org/10.1029/2005JB003774
  31. Ghilardi, P., Kai, A.K., and Menduni, G. (1993) Selfsimilar heterogeneity in granular porous media at the representative elementary volume scale. Water Resour. Res., 29, 1205-1214 https://doi.org/10.1029/92WR02419
  32. Gimenez, D., Allmaras, R.R., Nater, E.A., and Huggins, D.R. (1997) Fractal dimensions for volume and surface of interaggregate pores - scale effects. Geoderma, 77, 19-38 https://doi.org/10.1016/S0016-7061(97)00006-2
  33. Gladden, L.F. (2003) Recent advances in MRI studies of chemical reactors: ultrafast imaging of multiphase flows. Top. Catal., 24, 19-28 https://doi.org/10.1023/B:TOCA.0000003072.56070.2e
  34. Gladden, L.F., Buckley, C., Chow, P.S., Davidson, J.F., Mantle, M.D., and Sederman, A.J. (2004) 'Looking into' chemical products and processes. Curr. Appl. Phys., 4, 93-97 https://doi.org/10.1016/j.cap.2003.10.004
  35. Gladden, L.F., Hollewand, M.P., and Alexander, P. (1995) Characterization of structural inhomogeneities in porous-media. AIChE J., 41, 894-906 https://doi.org/10.1002/aic.690410416
  36. Gussoni, A., Greco, F., Bonazzi, F., Vezzoli, A., Botta, D., Dotelli, G., Sora, I.N., Pelosato, R., and Zetta, L. (2004) H-1 NMR spin-spin relaxation and imaging in porous systems: an application to the morphological study of white Portland cement during hydration in the presence of organics. Magn. Reson. Imaging, 22, 877-889 https://doi.org/10.1016/j.mri.2004.01.068
  37. Hall, P.L., Mildner, D.F.R., and Borst, R.L. (1986) Smallangle scattering studies of the pore spaces of shaly rocks. J. Geophys. Res., 91, 2183–2192 https://doi.org/10.1029/JB091iB02p02183
  38. Hansen, J.P. and Skjeltorp, A.T. (1988) Fractal pore space and rock permeability implications. Phys. Rev. B, 38, 2635-2638 https://doi.org/10.1103/PhysRevB.38.2635
  39. Herrmann, K.H., Pohlmeier, A., Gembris, D., and Vereecken, H. (2002) Three-dimensional imaging of pore water diffusion and motion in porous media by nuclear magnetic resonance imaging. J. Hydro., 267, 244-257 https://doi.org/10.1016/S0022-1694(02)00154-3
  40. Johns, M.L. and Gladden, L.F. (2000) Probing ganglia dissolution and mobilization in a water-saturated porous medium using MRI. J. Colloid Interf. Sci., 225, 119-127 https://doi.org/10.1006/jcis.2000.6742
  41. Johns, M.L., Sederman, A.J., Bramley, A.S., Gladden, L.F., and Alexander, P. (2000) Local transitions in flow phenomena through packed beds identified by MRI. Aiche J., 46, 2151-2161 https://doi.org/10.1002/aic.690461108
  42. Katz, A.J. and Thompson, A.H. (1985) Fractal sandstone pores: Implications for conductivity and pore formation. Phys. Rev. Lett., 54, 1325-1328 https://doi.org/10.1103/PhysRevLett.54.1325
  43. Keehm, Y. (2003) Computational Rock Physics: Transport Properties in Porous Media and Applications, Geophysics. Stanford University, Doctor of Philosophy, 135
  44. Keehm, Y., Mukerji, T., and Nur, A. (2004) Permeability prediction from thin sections: 3D reconstruction and Lattice-Boltzmann flow simulation. Geophys. Res. Lett., 31, L04606 https://doi.org/10.1029/2003GL018761
  45. Keehm, Y., Sternlof, K., and Mukerji, T. (2006) Computational estimation of compaction band permeability in sandstone. Geosci. J., 10, 499-505 https://doi.org/10.1007/BF02910443
  46. Klemm, A., Muller, H.-P., and Kimmich, R. (1997) NMR microscopy of pore-space backbones in rock, sponge, and sand in comparison with random percolation model objects. Phys. Rev. E, 55, 4413-4422 https://doi.org/10.1103/PhysRevE.55.4413
  47. Krohn, C.E. and Thompson, A.H. (1986) Fractal sandstone pores: Automated measurements using scanningelectron- microscope images. Phys. Rev. B, 33, 6366-6374 https://doi.org/10.1103/PhysRevB.33.6366
  48. Lee, B.H. and Lee, S.K. (2009) Effect of lattice topology on the adsorption of benzyl alcohol on kaolinite surfaces: Quantum chemical calculations of geometry optimization, binding energy, and NMR chemical shielding. Am. Mineral., 94, 1392-1404 https://doi.org/10.2138/am.2009.3198
  49. Lee, S.K. (2005) Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics. Geochim. Cosmochim. Acta, 69, 3695-3710 https://doi.org/10.1016/j.gca.2005.03.011
  50. Levitt, M.H. (2001) Spin Dynamics. John Wiley & Sons Ltd, Chichester, 686p
  51. Lindquist, W.B. and Venkatarangan, A. (1999) Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth A, 25, 593-599
  52. Locke, B.R., Acton, M., and Gibbs, S.J. (2001) Electroosmotic flow in porous media using magnetic resonance imaging. Langmuir, 17, 6771-6781 https://doi.org/10.1021/la0016928
  53. Lysova, A.A., Koptyug, I.V., Sagdeev, R.Z., Parmon, V.N., Bergwerff, J.A., and Weckhuysen, B.M. (2005) Noninvasive in situ visualization of supported catalyst preparations using multinuclear magnetic resonance imaging. J. Am. Chem. Soc., 127, 11916-11917 https://doi.org/10.1021/ja053456v
  54. Muller, H.-P., Weis, J., and Kimmich, R. (1995) Computer simulation and six-dimensional spin density and velocity NMR microimaging of lacunar systems: A comparative analysis of percolation properties. Phys. Rev. E, 52, 5195-5204 https://doi.org/10.1103/PhysRevE.52.5195
  55. Mandelbrot, B.B. (1982) The fractal geometry of nature. Freeman, New York, 468p
  56. Manz, B., Alexander, P., and Gladden, L.F. (1999) Correlations between dispersion and structure in porous media probed by nuclear magnetic resonance. Phys. Fluids, 11, 259-267 https://doi.org/10.1063/1.869876
  57. Mertens, D., Heinen, C., Hardy, E.H., and Buggisch, H.W. (2006) Newtonian and non-Newtonian low Re number flow through bead packings. Chem. Eng. Tech., 29, 854-861 https://doi.org/10.1002/ceat.200600048
  58. Ogawa, K., Matsuka, T., Hirai, S., and Okazaki, K. (2001) Three-dimensional velocity measurement of complex interstitial flows through water-saturated porous media by the tagging method in the MRI technique. Meas. Sci. Tech., 12, 172-180 https://doi.org/10.1088/0957-0233/12/2/308
  59. Okamoto, I., Hirai, S., and Ogawa, K. (2001) MRI velocity measurements of water flow in porous media containing a stagnant immiscible liquid. Meas. Sci. Tech., 12, 1465-1472 https://doi.org/10.1088/0957-0233/12/9/312
  60. Perret, J.S., Prasher, S.O., and Kacimov, A.R. (2003) Mass fractal dimension of soil macropores using computed tomography: from the box-counting to the cube-counting algorithm. Eur. J. Soil Sci., 54, 569-579 https://doi.org/10.1046/j.1365-2389.2003.00546.x
  61. Pomerantz, A.E., Sigmund, E.E., and Song, Y.Q. (2007) Spatial heterogeneity length scales in carbonate rocks. Appl. Magn. Res., 32, 221-231 https://doi.org/10.1007/s00723-007-0010-7
  62. Ren, X.H., Stapf, S., and Blumich, B. (2005) Magnetic resonance visualisation of flow and pore structure in packed beds with low aspect ratio. Chem. Eng. Tech., 28, 219-225 https://doi.org/10.1002/ceat.200407092
  63. Rigby, S.P., Cheah, K.-Y., and Gladden L.F. (1996) NMR imaging studies of transport heterogeneity and anisotropic diffusion in porous alumina pellets. Appl. Catal. A: General, 144, 377-388 https://doi.org/10.1016/0926-860X(96)00130-5
  64. Ritter, H.L. and Drake, L.C. (1945) Pressure porosimeter and determination of complete macropore-size distributions. Pressure porosimeter and determination of complete macropore-size distributions. Ind. Eng. Chem. Anal. Ed., 17, 782-786 https://doi.org/10.1021/i560148a013
  65. Sahimi, M. (1993) Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys., 65, 1393-1534 https://doi.org/10.1103/RevModPhys.65.1393
  66. Sederman, A.J., Johns, M.L., Bramley, A.S., Alexander, P., and Gladden, L.F. (1997) Magnetic resonance imaging of liquid flow and pore structure within packed beds. Chem. Eng. Sci., 52, 2239-2250 https://doi.org/10.1016/S0009-2509(97)00057-2
  67. Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., and Adler, P.M. (1994) Synchrotron computed microtomography of porous media: Topology and transports. Phys. Rev. Lett., 73, 2001-2004 https://doi.org/10.1103/PhysRevLett.73.2001
  68. Takei, Y. (2002) Effect of pore geometry on VP/VS: From equilibrium geometry to crack. J. Geophys. Res.-Solid Earth, 107(B2), 2043 https://doi.org/10.1029/2001JB000522
  69. Tang, D. and Maragoni, A.G. (2008) Fractal dimensions of simulated and real fat crystal networks in 3D space. J. Am. Oil Chem. Soc., 85, 495-499 https://doi.org/10.1007/s11746-008-1237-7
  70. Tarquis, A.M., McInnes, K.J., Key, J.R., Saa, A., Garcia, M.R., and Diaz, M.C. (2006) Multiscaling analysis in a structured clay soil using 2D images. J. Hydro., 322, 236-246 https://doi.org/10.1016/j.jhydrol.2005.03.005
  71. Thompson, A.H., Katz, A.J., and Krohn, C.E. (1987) The microgeometry and transport properties of sedimentary rock. Adv. Phys., 36, 625-694 https://doi.org/10.1080/00018738700101062
  72. Wallis, J.W., Miller, T.R., Lerner, C.A., and Kleerup, E.C. (1989) Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging, 8, 297-303 https://doi.org/10.1109/42.41482
  73. Wu, A., Yang, B., and Zhou, X. (2008) Fractal analysis of granular ore media based on computed tomography image processing. Trans. Nonfer. Metals Soc. China, 18, 1523-1528 https://doi.org/10.1016/S1003-6326(09)60036-4
  74. Xu, Y.F. and Dong, P. (2004) Fractal approach to hydraulic properties in unsaturated porous media. Chaos, Solit. Fractals, 19, 327-337 https://doi.org/10.1016/S0960-0779(03)00045-6
  75. Yu, B. and Liu, W. (2004) Fractal analysis of permeabilities for porous media. AIChE J., 50, 46-57 https://doi.org/10.1002/aic.10004
  76. Zhang, C.Y., Werth, C.J., and Webb, A.G. (2002) A magnetic resonance imaging study of dense nonaqueous phase liquid dissolution from angular porous media. Environ. Sci. Technol., 36, 3310-3317 https://doi.org/10.1021/es011497v
  77. Zhang, C.Y., Werth, C.J., and Webb, A.G. (2007) Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging Environ. Sci. Technol, 41, 3672-3678 https://doi.org/10.1021/es061675q