DOI QR코드

DOI QR Code

참당귀(Angelica gigas Nakai) 중 Decursin 및 Decursinol Angelate의 분리 및 정제

Isolation and Purification of Decursin and Decursinol Angelate in Angelica gigas Nakai

  • 김강민 (인제대학교 식의약생명공학과) ;
  • 정재연 (인제대학교 식의약생명공학과) ;
  • 황성우 (인제대학교 식의약생명공학과) ;
  • 김묘정 (인제대학교 식의약생명공학과) ;
  • 강재선 (경성대학교 약학과)
  • 발행 : 2009.05.29

초록

생약재로 사용 중인 Angelica gigas Nakai의 decursin 및 decursinol angelate를 60% ethanol로 최종적으로 추출 후 recycling HPLC 및 HPLC/MS에 의해 각각을 분리하였다. 60% ethanol로 $-20^{\circ}C$에서 추출하였을 경우 95% 순도의 decursin 및 decursinol angelate를 얻을 수 있었고 10번 이상의 recycle를 통해서 순수한 decursin 및 decursinol angelate를 분리할 수 있었다. 분리한 decursin 및 decursinol angelate를 HPLC/MS를 통해 분자량을 확인하였을 경우 m/z=329($[M+H]^+$) 및 m/z=351($[M+Na]^+$)과 같은 결과를 얻을 수 있었다. 이 분리 방법을 통해 decursin 및 decursinol angelate를 통한 의약품 및 식품 등에 관한 여러 연구에 있어 두 물질 각각에 대한 약리학적 효과를 도출하는데 기여할 것이며, 물질표준화에 기여할 것으로 사료된다.

This paper is intended as an investigation of the method of extraction and the analysis by high-performance liquid chromatography mass spectroscopy of decursin and decursinol angelate in the dried root of Angelica gigas Nakai. The extracted decursin and decursinol angelate were the purity of >95% using 60% ethanol at $-20^{\circ}C$ for 12 hours by HPLC analysis. Decursin and decursinol angelate were efficiently isolated using recycling HPLC. The purity of isolated decursin and decursinol angelate was identified as 99.97 and 99.40% by HPLC analysis, respectively. The molecular weights of Decursin and decursinol angelate were also identified as m/z=329 ($[M+H]^+$) and m/z=351 ($[M+Na]^+$) by mass spectroscopy.

키워드

참고문헌

  1. Ahn MJ, Lee MK, Kim YC, Sung SH. 2008. The simultaneous determination of coumarins in Angelica gigas root by high performance liquid chromatography-diode array detector coupled with electrospray ionization/mass spectrometry. J Pharmaceut Biomed 46: 258-266 https://doi.org/10.1016/j.jpba.2007.09.020
  2. Yook CS. 1990. Coloured medicinal plants of Korea. Academy Book Co., Seoul. p 390
  3. Lee SH, Lee YS, Jung SH, Shin KH, Kim BK, Kang SS. 2003. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch Pharm Res 26: 727-730 https://doi.org/10.1007/BF02976682
  4. Lee SH, Shin DS, Kim JS, Oh KB, Kang SS. 2003. Antibacterial courmins from Angelica gigas roots. Arch Pharm Res 26: 449-452 https://doi.org/10.1007/BF02976860
  5. Yim DS, Singh RP, Agarwal C, Lee SY, Chi HJ. 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res 65: 1035-1044
  6. Kang SY, Lee KY, Sung SH, Park MJ, Kim YC. 2001. Coumarins isolated from Angelica gigas inhibit acetylcholinesterase structure-activity relationships. J Nat Prod 64: 683-685 https://doi.org/10.1021/np000441w
  7. Ahn KS, Sim WS, Kim IH. 1996. Decursin: a cytotoxic agent and protein kinase C activator from the root of Angelica gigas. Planta Med 62: 7-9 https://doi.org/10.1055/s-2006-957785
  8. Bae EA, Han MJ, Kim NJ, Kim DH. 1998. Anti-Helicobacter pylori activity of herbal medicines. Biol Pharm Bull 21: 990-992 https://doi.org/10.1248/bpb.21.990
  9. Ryu KS, Yook CS. 1967. Studies on the coumarins of the root of Angelica gigas Nakai. Yakhakhoeji 11: 22-26
  10. Kim HH, Ahn KS, Han H, Choung SY, Choi SY, Kim IH. 2005. Decursin and PDBu: two PKC activators distinctively acting in the megakaryocytic differentiation of K562 human erythroleukemia cells. Leuk Res 29: 1407-1413 https://doi.org/10.1016/j.leukres.2005.05.001
  11. Yim D, Singh RP, Agarwal C, Lee S, Chi H, Agarwal R. 2005. A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res 65: 1035-1044
  12. Lee JH, Choi YS, Kim JH, Jeong HG, Kim DH, Yun MY, Kim JS, Lee SH, Cho SH, Shen GN, Kim EG, Jin WY, Song GY. 2006. A mass preparation method of (+)-decursinol from the roots of Angelica gigas. Yakhakhoeji 50: 172-176
  13. Park KW, Choi SR, Shon MY, Jeong IY, Kang KS, Lee ST, Shim KH, Seo KI. 2007. Cytotoxic effects of decursin from Angelica gigas Nakai in human cancer cells. J Korean Soc Food Sci Nutr 36: 1385-1390 https://doi.org/10.3746/jkfn.2007.36.11.1385
  14. Lim JD, Kim IH, Kim HH, Ahn KS, Han HG. 2001. Enantioselective synthesis of decursinol angelate and decursin. Tetrahedron Lett 42: 4001-4003 https://doi.org/10.1016/S0040-4039(01)00642-6

피인용 문헌

  1. Decursin attenuates hepatic fibrogenesis through interrupting TGF-beta-mediated NAD(P)H oxidase activation and Smad signaling in vivo and in vitro vol.108, pp.2, 2014, https://doi.org/10.1016/j.lfs.2014.05.012
  2. The Improvement Effect of Fermented Angelica gigas Nakai Powder Against Orotic Acid-induced Fatty Liver in Rats vol.24, pp.4, 2014, https://doi.org/10.5352/JLS.2014.24.4.411
  3. Physiochemical Characteristics of Extruded Angelica gigas Nakai Depending on the Extrusion Processing Parameter vol.22, pp.5, 2014, https://doi.org/10.7783/KJMCS.2014.22.5.349
  4. Biological Activities of Extracts from Flowers of Angelica gigas Nakai vol.40, pp.8, 2011, https://doi.org/10.3746/jkfn.2011.40.8.1079
  5. Decursin Isolated fromAngelica gigasNakai Rescues PC12 Cells from Amyloidβ-Protein-Induced Neurotoxicity through Nrf2-Mediated Upregulation of Heme Oxygenase-1: Potential Roles of MAPK vol.2013, 2013, https://doi.org/10.1155/2013/467245
  6. Bioactive Materials and Biological Activity in the Extracts of Leaf, Stem Mixture and Root from Angelica gigas Nakai vol.20, pp.5, 2010, https://doi.org/10.5352/JLS.2010.20.5.750
  7. Anti-inflammatory Activities of Coumarins Isolated from Angelica gigas Nakai on LPS-stimulated RAW 264.7 Cells vol.14, pp.3, 2009, https://doi.org/10.3746/jfn.2009.14.3.179
  8. Protective Effects of Decursin and Decursinol Angelate against Amyloid β-Protein-Induced Oxidative Stress in the PC12 Cell Line: The Role of Nrf2 and Antioxidant Enzymes vol.75, pp.3, 2011, https://doi.org/10.1271/bbb.100606
  9. Ingredients Analysis and Biological Activity of Fermented Angelica gigas Nakai by Mold vol.20, pp.9, 2010, https://doi.org/10.5352/JLS.2010.20.9.1385
  10. Recovery from the Two-generation Reproductive Toxicity in Sprague-Dawley Rats by Treatment with Decursin and Decursinol Angelate vol.25, pp.7, 2015, https://doi.org/10.5352/JLS.2015.25.7.765
  11. Antioxidant and ACE Inhibitory Activity of Cultivated and Wild Angelica gigas Nakai Extracts Prepared Using Different Extraction Conditions vol.19, pp.4, 2014, https://doi.org/10.3746/pnf.2014.19.4.274
  12. Effects of Extraction Methods of Medicinal Plants on Human Growth of Neuroblastoma SK-N-SH Cells vol.21, pp.8, 2011, https://doi.org/10.5352/JLS.2011.21.8.1190
  13. Decursin and decursinol angelate affect spermatogenesis in the adult rat at oral administration vol.10, pp.1, 2014, https://doi.org/10.1007/s13273-014-0010-2
  14. Decursin attenuates the amyloid-β-induced inflammatory response in PC12 cells via MAPK and nuclear factor-κB pathway vol.32, pp.2, 2017, https://doi.org/10.1002/ptr.5962
  15. 산지별 홍국발효 참당귀의 이화학적 특성 및 생리활성 vol.27, pp.8, 2009, https://doi.org/10.5352/jls.2017.27.8.919
  16. Bacillus polyfermenticus KJS-2와 참당귀 추출물의 triton WR-1339 유발 고지혈증에 대한 예방효과 vol.28, pp.6, 2009, https://doi.org/10.5352/jls.2018.28.6.726
  17. 참당귀 지상부 추출물의 지표성분 decursin의 분석법 개발 및 검증 vol.34, pp.1, 2009, https://doi.org/10.13103/jfhs.2019.34.1.52
  18. Rapid and Efficient Separation of Decursin and Decursinol Angelate from Angelica gigas Nakai using Ionic Liquid, (BMIm)BF4, Combined with Crystallization vol.24, pp.13, 2019, https://doi.org/10.3390/molecules24132390
  19. Bacillus Subtilis KJ-3를 이용한 생물전환물 및 그 혼합물의 생리활성 vol.29, pp.10, 2009, https://doi.org/10.5352/jls.2019.29.10.1086
  20. 참당귀잎 추출물을 첨가한 요구르트의 품질 특성 vol.37, pp.4, 2019, https://doi.org/10.22424/jmsb.2019.37.4.237
  21. C57BL/6 마우스에서 모발성장 촉진에 대한 Allium cepa (red)와 Angelica gigas Nakai의 효과 vol.30, pp.11, 2020, https://doi.org/10.5352/jls.2020.30.11.990
  22. 참당귀(Angelica gigas Nakai)잎 용매추출에 따른 생리활성 vol.34, pp.2, 2009, https://doi.org/10.9799/ksfan.2021.34.2.181