DOI QR코드

DOI QR Code

Preparation and Electrical Properties of BiFeO3 Films by RF Magnetron Sputtering

RF Magnetron Sputtering에 의한 BiFeO3 박막의 제조 및 전기적 특성

  • Park, Sang-Shik (School of Nano & Materials Engineering, Kyungpook National University)
  • 박상식 (경북대학교 나노소재공학부)
  • Published : 2009.05.27

Abstract

Mn-substituted $BiFeO_3$(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/$O_2$ mixture of various deposition pressures at room temperature. The effects of the deposition pressure and annealing temperature on the crystallization and electrical properties of BFO films were investigated. X-ray diffraction patterns revealed that BFO films were crystallized for films annealed above $500^{\circ}C$. BFO films annealed at $550^{\circ}C$ for 5 min in $N_2$ atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Bi ratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grain size and surface roughness of films increased with an increase in the deposition pressure. The dielectric constant of BFO films prepared at various conditions shows $127{\sim}187$ at 1 kHz. The leakage current density of BFO films annealed at $500^{\circ}C$ was approximately two orders of magnitude lower than that of $550^{\circ}C$. The leakage current density of the BFO films deposited at $10{\sim}30\;m$ Torr was about $5{\times}10^{-6}{\sim}3{\times}10^{-2}A/cm^2$ at 100 kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealed at $500^{\circ}C$ exhibited remnant polarization(2Pr) of $26.4{\mu}C/cm^2$ at 470 kV/cm.

Keywords

References

  1. J. Dho, C.W. Leung, J. L. M. Driscoll and M.G. Blamire, J. Cryst. Growth, 267, 548 (2004) https://doi.org/10.1016/j.jcrysgro.2004.04.028
  2. W. M. Zhu and Z. G. Ye, Ceram. Int., 30, 1435 (2004) https://doi.org/10.1016/j.ceramint.2003.12.072
  3. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Wagmare, N.A. Spaldin, K.M. Rabe, M. Wuttig and R. Ramesh, Science, 299, 1719 (2003) https://doi.org/10.1126/science.1080615
  4. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Nature, 426, 55 (2003) https://doi.org/10.1038/nature02018
  5. F. Kubel and H. Schmid, Acta Crystallogr., B 46, 698 (1990) https://doi.org/10.1107/S0108768190006887
  6. J. M. Moreau, C. Michel, R. Gerson and W. J. James, J. Phys. Chem. Sol., 32, 1315 (1971) https://doi.org/10.1016/S0022-3697(71)80189-0
  7. W. Eerenstein, F. D. Morison, J. Dho, M. G. Blamire, J. F. Scott and N. D. Mathur, Science, 307, 1203 (2005) https://doi.org/10.1126/science.1105422
  8. H. Uchida, R. Ueno, H. Nakaki, H. Funakubo and S. Koda, Jpn. J. Appl. Phys., 44, L561 (2005) https://doi.org/10.1143/JJAP.44.L561
  9. C. F. Chung and J. M. Wu, Electrochem. Solid-state Lett. 8, F63 (2005) https://doi.org/10.1149/1.2103607
  10. H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E, Jacquet, A. Khodan, J. P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson and M. Viret, Appl. Phys. Lett., 87, 072508 (2005) https://doi.org/10.1063/1.2009808
  11. W. Tian, V. Vaithyanathan, D. G. Schlom, Q. Zhan, S. Y. Yang, Y. H. Chu and R. Ramesh, Appl. Phys. Lett., 90, 172908 (2007) https://doi.org/10.1063/1.2730580
  12. C. C. Lee and J. M. Wu, Appl. Surf. Sci., 253, 7069 (2007) https://doi.org/10.1016/j.apsusc.2007.02.060
  13. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu and Z. G. Liu, Appl. Phys. Lett., 84, 1731 (2004) https://doi.org/10.1063/1.1667612
  14. S. K. Singh and H. Isiwara, Jpn. J. Appl. Phys., 44, L734 (2005) https://doi.org/10.1143/JJAP.44.L734
  15. J. K. Kim, S. S. Kim and W. J. Kim, Mater. Lett., 59, 4006 (2005) https://doi.org/10.1016/j.matlet.2005.07.050
  16. S. T. Tay, X. H. Jiang, C. H. A. Huan, T. S. Wee and R. Liu, J. Appl. Phys., 88, 5928 (2000) https://doi.org/10.1063/1.1317240
  17. V. M. Ferreira, J. L. Baptista, S. Kamba and J. Petzelt, J. Mater. Sci., 28, 5894 (1993) https://doi.org/10.1007/BF00365198