DOI QR코드

DOI QR Code

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl (ERI, i-Cube Center, Gyeongsang National University) ;
  • Hur, Bo-Young (ERI, i-Cube Center, Gyeongsang National University) ;
  • Nakajima, Hideo (The Institute of Scientific and Industrial Research, Osaka University)
  • Published : 2009.05.27

Abstract

Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

Keywords

References

  1. X. Badichea, S. Forest, T. Guiberta, Y. Bienveun, J.-D. Bartout, P. Ienny, M. Croset and H. Bernet, Mater. Sci. Eng. A, 289, 276 (2000) https://doi.org/10.1016/S0921-5093(00)00898-4
  2. J. Banhart, Prog. Mater. Sci., 46, 559 (2001) https://doi.org/10.1016/S0079-6425(00)00002-5
  3. S. Y. Kim, B. Y. Hur, C.K. Kwon, D. K. Ahn and S. H. Park, J. Kor. Inst. Met. & Mater., 40, 910 (2002)
  4. S. Y. Kim, H. G. Seong and B. Y. Hur, Solid State Phenomena, 124, 1801 (2007) https://doi.org/10.4028/www.scientific.net/SSP.124-126.1801
  5. H. Nakajima, Prog. Mater. Sci., 52, 1091 (2007) https://doi.org/10.1016/j.pmatsci.2006.09.001
  6. V. Shapovalov and L. Boyko, Adv. Mater. Eng, 6, 407 (2004) https://doi.org/10.1002/adem.200405148
  7. Y. Liu, Y. Li, J. Wan and H. Zhang, Mater. Sci. Eng.: A, 402, 47 (2005) https://doi.org/10.1016/j.msea.2005.03.107
  8. A. E. Simone and L.J. Gibson, J. Mater. Sci., 32, 451 (1997) https://doi.org/10.1023/A:1018573904809
  9. A. E. Simone and L.J. Gibson, Acta Mater., 44, 1437 (1996) https://doi.org/10.1016/1359-6454(95)00278-2
  10. S. K. Hyun, K. Murakami and H. Nakajima, Mater. Sci. Eng.: A, 299, 241 (2001) https://doi.org/10.1016/S0921-5093(00)01402-7
  11. T. Ide, M. Tane, S. K. Hyun and H. Nakajima, Mater. Trans., 47, 2116 (2006) https://doi.org/10.2320/matertrans.47.2116
  12. H. Onishi, S. K. Hyun and H. Nakajima, Mater. Trans., 47, 2120 (2006) https://doi.org/10.2320/matertrans.47.2120
  13. H. Nakajima and T. Ide, Metall. Mater. Trans. A, 39, 390 (2008) https://doi.org/10.1007/s11661-007-9402-4
  14. The Wikipedia On the Web. Retrieved January 6, 2009 from http://en.wikipedia.org/wiki/ Sodium_hydroxide
  15. The Wikipedia On the Web. Retrieved January 6, 2009 from http://en.wikipedia.org/wiki/ Calcium_hydroxide
  16. D. K. Ahn, B. Y. Hur, S. Y. Kim, S. H. Park, H. J. Ahn and S. J. Park, J. Kor. Inst. Met.& Mater., 40, 915 (2002)
  17. D. H. Yang, B. Y. Hur and S. R. Yang, J. Alloy Comp., 461, 221 (2008) https://doi.org/10.1016/j.jallcom.2007.07.098
  18. H. Onishi, S. Ueno, S. K. Hyun and H. Nakajima, Metall. Mater. Trans. A, 40, 438 (2008) https://doi.org/10.1007/s11661-008-9712-1
  19. S. Y. Kim, J. S. Park and H. Nakajima, Metall. Mater. Trans. A, 40, 937 (2009) https://doi.org/10.1007/s11661-008-9763-3