DOI QR코드

DOI QR Code

Blue Luminescent Center in Undoped ZnO Thin Films Grown by Plasma-assisted Molecular Beam Epitaxy

플라즈마 보조 분자선 적층 성장법으로 성장한 ZnO 박막의 청색 발광 중심

  • Kim, Jong-Bin (Korea University, Department of Advanced Materials Engineering, Korea University) ;
  • No, Young-Soo (Materials Science and Technology Research Division, Korea Institute of Science and Technology) ;
  • Byun, Dong-Jin (Korea University, Department of Advanced Materials Engineering, Korea University) ;
  • Park, Dong-Hee (Materials Science and Technology Research Division, Korea Institute of Science and Technology) ;
  • Choi, Won-Kook (Materials Science and Technology Research Division, Korea Institute of Science and Technology)
  • 김종빈 (고려대학교, 신소재공학과) ;
  • 노영수 (한국과학기술연구원, 재료기술연구본부) ;
  • 변동진 (고려대학교, 신소재공학과) ;
  • 박동희 (한국과학기술연구원, 재료기술연구본부) ;
  • 최원국 (한국과학기술연구원, 재료기술연구본부)
  • Published : 2009.05.27

Abstract

ZnO thin film was grown on a sapphire single crystal substrate by plasma assisted molecular beam epitaxy. In addition to near band edge (NBE) emissions, both blue and green luminescences are also observed together. The PL intensity of the blue luminescence (BL) range from 2.7 to 2.9 eV increased as the amount of activated oxygen increased, but green luminescence (GL) was weakly observed at about 2.4 eV without much change in intensity. This result is quite unlike previous studies in which BL and GL were regarded as the transition between shallow donor levels such as oxygen vacancy and interstitial zinc. Based on the transition level and formation energy of the ZnO intrinsic defects predicted through the first principle calculation, which employs density functional approximation (DFA) revised by local density approximation (LDA) and the LDA+U approach, the green and blue luminescence are nearly coincident with the transition from the conduction band to zinc vacancies of $V^{2-}_{Zn}$ and $V^-_{Zn}$, respectively.

Keywords

References

  1. D. M. Bagnall, Y. F. Chen, Z. Zhu, S. Koyama, M. Y. Shen, T. Goto and T. Yao, Appl. Phys. Lett., 70, 2230 (1997) https://doi.org/10.1063/1.118824
  2. D. A. Powell, K. K. Zadeh and W. Wlodarski, Sen. Actuators A, 115, 456 (2004) https://doi.org/10.1016/j.sna.2004.05.031
  3. Y. M. Sun, Ph. D. Thesis (in English), University of Science and Technology of China (2000)
  4. Y. Sun, P. Xu, C. Shi, F. Xu, H. Pan and E. Lu, J. Electron. Spectrosc. Relat. Phenom., 114, 1123 (2001) https://doi.org/10.1016/S0368-2048(00)00382-0
  5. M. Pan, W. E. Fenwick, M. Strassburg, N. Li, H. Kang, M. H. Kane, A. Asghar, S. Gupta, R. Varatharajan, J. Nause, N. El-Zein, P. Fabiano, T. Steiner and I. Ferguson, J. Cryst. Growth, 287, 688 (2006) https://doi.org/10.1016/j.jcrysgro.2005.10.093
  6. Z. Fang, Y. Wang, D. Xu, Y. S. Tan and X. Liu, Opt. Mater., 26, 239 (2004) https://doi.org/10.1016/j.optmat.2003.11.027
  7. Z. Fang, Y. Wang, X. Peng, X. Liu and C. Zhen, Mater. Lett., 57, 4187 (2003) https://doi.org/10.1016/S0167-577X(03)00287-8
  8. T. E. Park, D. C. Kim, B. H. Kong and H. K. Cho, J. Korean Phys. Soc., 45, 697 (2004)
  9. X. Q. Wei, B. Y. Man, C. S. Xue, C. S. Chen and M. Liu, Jpn. J. Appl. Phys., 45, 8586 (2006) https://doi.org/10.1143/JJAP.45.8586
  10. X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang and C. Yang, Physica. B: Condensed matter, 388, 145 (2007) https://doi.org/10.1016/j.physb.2006.05.346
  11. D. H. Zhang, Z. Y. Xue and Q. P. Wang, J. Phys. D: Appl. Phys., 35, 2837 (2002) https://doi.org/10.1088/0022-3727/35/21/321
  12. D. H. Zhang, Q. P. Wang and Z. Y. Xue, Appl. Surf. Sci., 207, 20 (2003) https://doi.org/10.1016/S0169-4332(02)01225-4
  13. Q. P. Wang, X. J. Zhang, G. Q. Wang, S. H. Chen, X. H. Wu and H. L. Ma, Appl. Surf. Sci., 254, 5100 (2008) https://doi.org/10.1016/j.apsusc.2008.02.007
  14. Z. X. Fu, C. X. Guo, B. X. Lin and G. H. Liao, Chin. Phys. Lett., 15, 457 (1998) https://doi.org/10.1088/0256-307X/15/6/025
  15. Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli and H. W. White, Appl. Phys. Lett., 88, 201 (2000)
  16. Y. J. Lin, C. L. Tsai, Y. M. Lu and C. J. Liu, J. Appl. Phys., 99, 093501 (2006) https://doi.org/10.1063/1.2193649
  17. S. B. Zhang, S. H. Wei and A. Zunger, Phys. Rev. B, 63, 075205 (2001) https://doi.org/10.1103/PhysRevB.63.075205
  18. C. L. Wu, X. L. Qiao, L. L. Luo and H. J. Li, Mater. Res. Bull., 27, 327 (1992) https://doi.org/10.1016/0025-5408(92)90062-5
  19. Y. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, K. T. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen and T. Goto, J. Cryst. Growth, 181, 165 (1997) https://doi.org/10.1016/S0022-0248(97)00286-8
  20. F. A. Selim, M. H. Weber, D. Solodovnikov and K. G. Lynn, Phys. Rev. Lett., 99, 085502 (2007) https://doi.org/10.1103/PhysRevLett.99.085502
  21. Y. W. Heo, K. Ip, S.J. Pearton, D. P. Norton and J. D. Budai, Appl. Surf. Sci., 252, 7442 (2006) https://doi.org/10.1016/j.apsusc.2005.08.094
  22. S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr and M. R. Davolos. Int. J. Inorg. Mater., 3, 749 (2001) https://doi.org/10.1016/S1466-6049(01)00055-1
  23. C. X. Xu, X. W. Sun, X. H. Zhang, L. Ke and S. J. Chua, Nanotechnology, 15, 856 (2004) https://doi.org/10.1088/0957-4484/15/7/026
  24. A. Janotti and C. G. Van de Walle, J. Cryst. Growth, 287, 58 (2006) https://doi.org/10.1016/j.jcrysgro.2005.10.043
  25. D. B. Laks, C. G. Van de Walle, G. F. Neumark, P. E. Blochl and S. T. Pantelides, Phys. Rev. B, 45, 10965 (1992) https://doi.org/10.1103/PhysRevB.45.10965
  26. H. S. Kang, J. S. Kang, J. W. Kim and S. Y. Lee, J. Appl. Phys., 95, 1246 (2004) https://doi.org/10.1063/1.1633343
  27. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogn, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys., 98, 041301 (2005) https://doi.org/10.1063/1.1992666
  28. W. Gopel, J. Vac. Sci. Technol., 16, 1229 (1979) https://doi.org/10.1116/1.570197
  29. S. A. Studenikin and M. Cocivera, J. Appl. Phys., 89, 6189 (2001) https://doi.org/10.1063/1.1356432
  30. B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett., 79, 943 (2001) https://doi.org/10.1063/1.1394173
  31. B. X. Lin, Z. X. Fu, Y. B. Jia and G. H. Liao, J. Electrochem. Soc., 148, G110 (2001) https://doi.org/10.1149/1.1346616
  32. B. K. Meyer, H. Alves, D. M. Hoffman, W. Kriegseis, D. Foster, F. Bertram, J. Christen, A. Hoffman, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Phys. Stat. Sol. (B), 241, 231 (2004) https://doi.org/10.1002/pssb.200301962
  33. Y. S. Jung, W. K. Choi, O. V. Kononenko and G. N. Panin, J. Appl. Phys. 99, 013502 (2006) https://doi.org/10.1063/1.2150602
  34. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. Harsch and G. Cantell, Phys. Rev. B, 57, 12151 (1998) https://doi.org/10.1103/PhysRevB.57.12151
  35. Y. P. Varshni, Physica, 34, 149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6
  36. K. J. Hong and T. S. Jeong, J. Cryst. Growth, 280, 545 (2005) https://doi.org/10.1016/j.jcrysgro.2005.04.009
  37. G. D. Cody, in Hydrogenated Amorphous Silicon, p. 42, ed. J. I. Pankove, Academic, New York, (1984)
  38. L. Wang and N. C. Giles, J. Appl. Phys., 94, 973 (2003) https://doi.org/10.1063/1.1586977
  39. B. Kumar, H. Gonga, S. Vicknesh, S. J. Chua and S. Tripathy, Appl. Phys. Lett., 89, 141901 (2006) https://doi.org/10.1063/1.2357870
  40. L. Troger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer and K. Baberschke, Phys. Rev. B, 49, 888 (1994) https://doi.org/10.1103/PhysRevB.49.888
  41. C. Boemare, T. Monteiro, M. J. Soares, J. G. Guilherme and E. Alves, Physica B: Condensed matter, 308, 985 (2001) https://doi.org/10.1016/S0921-4526(01)00854-7
  42. L. Wang and N. C. Giles, J. Appl. Phys., 94, 973 (2003) https://doi.org/10.1063/1.1586977
  43. N. Kumar, R. Kaur and R. M. Mehra, J. Lumin., 126, 784 (2007) https://doi.org/10.1016/j.jlumin.2006.11.012