DOI QR코드

DOI QR Code

Low Temperature Synthesis of Forsterite Powders by the Geopolymer Technique

지오폴리머 기술에 의한 포스테라이트 분말의 저온합성

  • Son, Se-Gu (YERAM REEM Research Center) ;
  • Lee, Ji-Hyeon (Department of Environmental Engineering, Kangwon National University) ;
  • Lee, Sang-Hoon (Department of Environmental Engineering, Hanyang University) ;
  • Kim, Young-Do (YERAM REEM Research Center)
  • 손세구 ((주)예람 REEM 연구소) ;
  • 이지현 (강원대학교 환경공학과) ;
  • 이상훈 (한양대학교 환경공학과 공과대학원) ;
  • 김영도 ((주)예람 REEM 연구소)
  • Published : 2009.05.31

Abstract

Forsterite is a crystalline magnesium silicate with chemical formula $Mg_2SiO_4$, which has extremely low electrical conductivity that makes it an ideal substrate material for electronics. In this study, forsterite precursors were synthesized with magnesium silicate gels from the mixture of magnesium nitrate solution and various sodium silicate solution by the geopolymer technique. Precursors and heattreated powders were characterized by thermogravimetrical differential thermal analyzer(TG-DTA), X-ray diffractometer(XRD), scanning electron microscopy(SEM), Si magic angle spinning nuclear magnetic resonance(MAS-NMR), transmission electron microscopy(TEM). As the result of analysis about the crystallization behavior by DTA, the synthesized precursors were crystallized in the temperature range of $700^{\circ}C$ to $900^{\circ}C$. The XRD results showed that the gel composition began to crystallize at various temperature. Also, it was found that the sodium orthosilicate based precursors(named as 'FO') began to crystallize at above $550^{\circ}C$. The FO peaks were much stronger than sodium silicate solution based precursors(named as 'FW'), sodium metasilicate based precursors(named as 'FM') at $800^{\circ}C$. TEM investigation revealed that the 100nm particle sized sample was obtained from FO by heating up to $800^{\circ}C$.

Keywords

References

  1. M. B. D. Mitchell, D. Jackson, and P. F. James, 'Preparation and Characterization of Forsterite $(Mg_2SiO_4)$ Aerogels,' J. Non-Cryst. Solids., 225 125-29 (1998) https://doi.org/10.1016/S0022-3093(98)00017-9
  2. M.T.Tsai, 'Preparation and Crystallization of Forsterite Fibrous Gels', J. Eur. Ceram. Soc., 23 1283-91 (2003) https://doi.org/10.1016/S0955-2219(02)00305-9
  3. K.X. Song and X.M.Chen, 'Phase Evolution and Microwave Dielectric Characteristics of Ti-substituted $Mg_2SiO_4$ Fosterite Ceramics,' Mater. Lett., 62 520-22 (2008) https://doi.org/10.1016/j.matlet.2007.05.078
  4. S.Ni, L.Chou, and J.Chang, 'Preparation and Characterization of Fosterite$(Mg_2SiO_4)$ Bioceramics,' Ceram. Inter., 33 83-8 (2007) https://doi.org/10.1016/j.ceramint.2005.07.021
  5. M.T.Tsai, 'Effects of Hydrolysis Processing on the Character of Fosterite gel Fibers. Part : Crystallites and Microstructural Evolutions,' J. Eur. Ceram. Soc., 22 1085-94 (2002) https://doi.org/10.1016/S0955-2219(01)00418-6
  6. J. Davidovits, 'Geopolymers and Geopolymeric Materials,' J. Therm. Anal., 35 429-41(1989) https://doi.org/10.1007/BF01904446
  7. J. Davidovits, 'Inorganic Polymeric New Materials,' J. Therm. Anal., 37 1633-56 (1991) https://doi.org/10.1007/BF01912193
  8. K. Ikeda, K. Onikura, Y. Nakamura, and S. Vedanand, 'Optical Spectra ofg Silicate Gels Prepared by the Geopolymer Technique, with Special Reference to the Low-temperature Formation of Lievenbergite$(Ni_2SiO_4)$,' J. Am. Ceram. Soc., 84 [8] 1717-20 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00904.x
  9. T. Iwahiro, Y. Nakamura, R. Komatsu, and K. Ikeda, 'Crystallization Behavior and Characteristics of Mullites Formed from Alumina-silica Gels Prepared by the Technique in Acidic Conditions,' J. Eur. Ceram. Soc., 21 2515-19 (2001) https://doi.org/10.1016/S0955-2219(01)00273-4
  10. R. Vallepu, A.M. Fernandez Jimenez, T. Terai, A. Mikuni, A. Palomo, K.J.D. Mackenzie, and K. Ikeda, 'Effect of Synthesis pH on the Preparation and Properties of K-Al-bearing Silicate Gels from Solution,' J. Ceram. Soc. Japan, 114 [7] 624-29 (2006) https://doi.org/10.2109/jcersj.114.624
  11. M. Criado, A. Palomo, and A. Fernandez-Jimenez, 'Alkali Activation of Fly Ashes.Part 1: Effect of Curing Conditions on the Carbonation of the Reaction Products,' Fuel, 84 2048-54 (2005) https://doi.org/10.1016/j.fuel.2005.03.030
  12. A. Palomo, M.W.Grutzeck, and M.T.Blanco, 'Alkali-Activated Fly Ashes-A Cement for the Future,' Cem. Concr, Res., 29 1323-29 (1999) https://doi.org/10.1016/S0008-8846(98)00243-9
  13. M. Criado, A. Fernandez-Jimenez, A.G. de la Torre, M.A.G. Aranda, and A. Palomo, 'An XRD Study of the Effect of the $SiO_2/Na_2O$ Ratio on the Alkali Activation of Fly Ash,' Cem. Concr. Res., 37 671-79 (2007) https://doi.org/10.1016/j.cemconres.2007.01.013
  14. D. Panias, I. P. Giannopoulou, and T. Perraki, 'Effect of Synthesis Parameters on Themechanical Properties of Fly Ash-Based Geopolymers,' Colloids Sur., A301 246-54 (2007)
  15. S. G. Son, J. H. Lee, J. M. Lee, and Y. D. Kim, 'Synthesis of Mullite Powder by the Geopolymer Technique,' J. Kor. Ceram. Soc., 45 [5] 303-08 (2008) https://doi.org/10.4191/KCERS.2008.45.5.303
  16. S. G. Son, J. H. Lee, J. M. Lee, and Y. D. Kim, 'Low Temperature Synthesis of Willemite Powder,' J. Kor. Ceram. Soc., 45 [7] 401-04(2008) https://doi.org/10.4191/KCERS.2008.45.7.401

Cited by

  1. Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator vol.25, pp.3, 2013, https://doi.org/10.4334/JKCI.2013.25.3.261