DOI QR코드

DOI QR Code

Photoelectrocatalytic Degradation of Dyes in Aqueous Solution Using CNT/TiO2 Electrode

  • Zhang, Feng-Jun (School of Materials and Chemical Engineering, Anhui University of Architecture) ;
  • Liu, Jin (School of Materials and Chemical Engineering, Anhui University of Architecture) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (School of Materials and Chemical Engineering, Anhui University of Architecture)
  • Published : 2009.05.31

Abstract

The effect of photoelectrocatalytic (PEC) degradation for different dyes with the CNT/$TiO_2$ electrode was studied. The prepared electrode was characterized with surface properties, structural crystallinity, elemental identification, and PEC activity. The $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine CNT. This indicated the blocking of micropores on the surface of CNT, which was further supported by observation via FESEM. XRD patterns of the composites showed that the CNT/$TiO_2$ composite contained a mixing anatase and rutile phase. EDX spectra showed the presence of C, O and Ti peaks for all samples. The decomposition efifciency of the prepared electrode was evaluated by the PEC degradation of three dyes (methylene blue (MB), rhodamine B (RH.B), methyl orange (MO)). The variations of the FT-IR spectra and pH value of dye solutions were measured during the PEC system; it was found that the CNT/$TiO_2$ electrode has better PEC degradation for MB solution than that of RH.B and MO. The proposed degradation mechanism was present.

Keywords

References

  1. H. Zollinger (Ed.), 'Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments,' pp. 136-39, 2nd revised ed., VCH, 1991
  2. M.G. Neelavannan, M. Revathi, and C. Ahmed Basha, 'Photocatalytic and Electrochemical Combined Treatment of extile Wash Water,' J. Hazard. Mater., 149 371-78 (2007) https://doi.org/10.1016/j.jhazmat.2007.04.025
  3. K. Scott, 'Electrochemical Process for Clean Technology', the Royal Society of Chemistry,' pp. 65-9, Cambridge, UK, 1995
  4. K. Rajeshwar and J.G. Ibanez, 'Environmental Electrochemistry-fundamentals and Applications in Pollution Abatement,' pp. 454-48, Academic Press Inc., San Diego, CA, 1997
  5. P. Cooper, 'Removing Colour from Dye House Wastewater-a Critical Review of Technology Available,' J. Soc. Dyers Colour., 109 97-100 (1993) https://doi.org/10.1111/j.1478-4408.1993.tb01536.x
  6. S. Balaji, S.J. Chung, R. Thiruvenkatachari, and I.S. Moon, 'Mediated Electrochemical Oxidation Process :Electro-oxidation of Cerium (III) to cerium (IV) in Nitric Acid Medium and a Study on Phenol Degradation by Cerium (IV) oxidant,' Chem. Eng. J., 125 51-7 (2006) https://doi.org/10.1016/j.cej.2006.05.021
  7. O. Tunay, I. Kabdasli, G. Eremektar, and D. Orhon, 'Color removal from Textile Wastewaters,' Water Sci. Technol., 34 9-16 (1996) https://doi.org/10.1016/S0273-1223(96)00815-3
  8. M. Muruganandham, N. Sobana, and M. Swaminathan, 'Solar Assisted Photocatalytic and Photochemical Degradation of Reactive Black 5,' J. Hazard. Mater., 137 1371-76 (2006) https://doi.org/10.1016/j.jhazmat.2006.03.030
  9. F. Javier Benitez, J.R. Francisco, L.A. Juan and G. Carolina, 'Photochemical oXidation Processes for the Elimination of Phenyl-urea Herbicides Inwaters,' J. Hazard. Mater., 138 278-87 (2006) https://doi.org/10.1016/j.jhazmat.2006.05.077
  10. I.K. Konstantinou and T.A. Albanis, '$TiO_2$-assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations A review,' Appl. Catal. B: Environ., 49 1-14 (2004) https://doi.org/10.1016/j.apcatb.2003.11.010
  11. M. Muruganandham, N. Shobana, and M. Swaminathan, 'Optimization of Solar Photocatalytic Degradation Conditions of Reactive Yellow 14 Azo Dye in Aqueous $TiO_2$,' J. Mol. Catal. A: Chem., 246 154-61(2006) https://doi.org/10.1016/j.molcata.2005.09.052
  12. S.K. Kansal, M. Singh, and D. Sud, 'Studies on Photodegradation of Two Commercial Dyes in Aqueous Phase Using Different Photocatalysts,' J. Hazard. Mater., 141 581-90 (2007) https://doi.org/10.1016/j.jhazmat.2006.07.035
  13. M.H. Habibi, A. Hassanzadeh, and S. Mahdavi, 'The Effect of Operational Parameters on the Photocatalytic Degradation of Three Textile Azo Dyes in Aqueous $Tio_2$ Suspensions,' J. Photochem. Photobiol. A: Chem., 172 89-96 (2005) https://doi.org/10.1016/j.jphotochem.2004.11.009
  14. C.H. Wu, 'Comparison of azo dye decolorization efficiency using UV/single semiconductor and UV/coupled semiconductor systems,' Chemosphere, 57 [7] 601-8 (2004) https://doi.org/10.1016/j.chemosphere.2004.07.008
  15. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemannt, 'Environmental Applications of sEmiconductor Photocatalysis,' Chem. Rev., 95 69-96 (1995) https://doi.org/10.1021/cr00033a004
  16. A. Fajishima, T.N. Rao, and D.A. Tryk, 'Titanium Dioxide Photocatalysis,' J. Photochem. Photobiol. C: Photochem. Rev., 1 1–21 (2000) https://doi.org/10.1016/S1389-5567(00)00002-2
  17. M.L. Chen, J.S. Bae, and W.C. Oh, 'Prepared of Carbon-Coated $TiO_2$ at Different Heat Treatment Temperatures and Their Photoactivity,' Carbon Sci., 7 259-65 (2006)
  18. M.L. Chen, J.S. Bae, and W.C. Oh, 'Characterization of $AC/TiO_2$ Composite Prepared with Pitch Binder and Their Photocatalytic Activity,' Bull. Kor. Chem. Soc., 27 (2006) https://doi.org/10.5012/bkcs.2006.27.9.1423
  19. M.L. Chen, J.S. Bae, and W.C. Oh, 'Characterization of Composite Prepared with Different Mixing Ratios of $Tio_2$ To Activated Carbon and their Photocatalytic,' Analy. Sci. Technol., 19 376-82 (2006)
  20. M.L. Chen, Y.S. Ko, and W.C. Oh, 'Carbon/$TiO_2$ Prepared from Anatase to Pitch and Their Photoacatalytic Performance,' Carbon Sci., 8 [1] 6-11 (2007)
  21. F.J. Zhang, M.L. Chen, and W.C. Oh, 'Synthesis and cHaracterization of Cnt/$Tio_2$ Photoelectrocatalytic Electrodes for Methlene Blue Degradation,' Materi. Res. Soc. Korea, 18 [11] 583-91 (2008) https://doi.org/10.3740/MRSK.2008.18.11.583
  22. W.C. Oh, A.R. Jung and W.B. Ko, 'Preparation of Fullerene/$tio_2$ Composite and its Photocatalytic Effect,' J. Ind. Eng. Chem., 13 [7] 1208-14 (2007)
  23. X.Z. Li, H.L. Liu, and P.T. Yue, 'Photoelectrocatalytic Oxidation of Rose Bengal in Aqueous Solution using a Ti/$TiO_2$ Mesh Electrode,' Environ. Sci. Technol., 34 4401-06 (2000) https://doi.org/10.1021/es000939k
  24. F.Y. Oliva, L.B. Avalle, E. Santos, and O.R. C'amara, 'Photoelectrochemical Characterization of Nanocrystalline $TiO_2$ Films on Titanium Substrates,' J. Photochem. Photobiol. A: Chem., 146 175-88 (2002) https://doi.org/10.1021/es000939k
  25. J. Sa, M. Fi. Garca, and J. A. Anderson, 'Photoformed Electron Transfer from $TiO_2$ to Metal Clusters,' Catal. Commun., 9 1991-95 (2008) https://doi.org/10.1016/j.catcom.2008.03.041
  26. M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura, and M. Toyoda, 'Carbon Coating of Anatase-type $TiO_2$ tHrough their Precipitation in PVA Aqueous Solution,' Carbon, 41 2619-24 (2003) https://doi.org/10.1016/S0008-6223(03)00340-3
  27. W.C. Oh and M.L. Chen, 'Electro-chemical Preparation of $TiO_2$/ACF Composites with TNB Electrolyte and their Photocatalytic Effect,' J. Ceram. Process. Res., 9 [2] 100-06 (2008)
  28. W.D Wang, P.Serp, P. Kalck, C.G.Silva, and J. L.Faria, 'Preparation and Characterization of Nanostructured MWCNT-$TiO_2$ Composite Materials for Photocatalytic Water Treatment Applications,' Mater. Res. Bull., 43 958-67 (2008) https://doi.org/10.1016/j.materresbull.2007.04.032
  29. W.D Wang, P. Serp, P. Kalck, and J.L. Faria, 'Visible Light Photodegradation of Phenol on MWNT-$TiO_2$ Composite Catalysts Prepared by a Modified Sol–gel Method,' J. Mol. Catal. A: Chem., 235 194-99 (2005) https://doi.org/10.1016/j.molcata.2005.02.027
  30. P.A. Christensen, T.P. Curtis, T.A. Egerton, S.A.M. Kosa, and J.R. Tinlin, 'Photoelectrocatalytic and Photocatalytic Disinfection of E. coli Suspensions by Titanium Dioxide,' Appl. Catal. B: Environ., 41 371-86 (2003) https://doi.org/10.1016/S0926-3373(02)00172-8
  31. D. Jiang, H. Zhao, S. Zhang, and R. John, 'Kinetic Study of PHOTOCATALYTIC OXIDation of Adsorbed Carboxylic acids at $TiO_2$ Porous Films by Photoelectrolysis,' J. Catal., 223 212-20 (2004) https://doi.org/10.1016/j.jcat.2004.01.030
  32. A. Nasser and A.E. Hendawy, 'Variation in the FTIR Spectra of a Biomass Under Impregnation, carbonization and Oxidation Conditions,' J. Anal. Appl. Pyrolysis, 75 159-66 (2006) https://doi.org/10.1016/j.jaap.2005.05.004
  33. H.F. Rance, 'The Raw Materials and Processing of Papermaking,' pp. 106-16, Elsevier, Amsterdam/New York, 1980
  34. E.A. El-Sharkawy, A.Y. Soliman, and K.M. Al-Amer, 'Comparative study for the removal of methylene blue via adsorption and photocatalytic degradation,' J. Colloid. Interface. Sci., 310 498-508 (2007) https://doi.org/10.1016/j.jcis.2007.02.013
  35. M.M. Raj, A. Dharmaraja, S.J. Kavitha, K. Panchanatheswaran, and D.E. Lynch, 'Mercury (II)-Methylene Blue Interactions: Complexation and Metallate Formation,' Inorg. Chim. Acta., 360 1799-808 (2007) https://doi.org/10.1016/j.ica.2006.09.022
  36. V.G. Serrano, J.P. Viilegas, A.P. Florindo, C.D. Valle, and C.V. Cahahorro, 'FT-IR Study of Rockrose and of Char and Activated Carbon,' J. Anal. Appl. Pyrolysis, 36 71-80 (1996) https://doi.org/10.1016/0165-2370(95)00921-3
  37. J.S. Chen, M.C. Liu, L. Zhang, J.D. Zhang, and L.T. Jin, 'Application of Nano $TiO_2$ Towards Polluted Water Treatment Combined with Electro-photochemical Method,' Water Res., 37 3815-20 (2003) https://doi.org/10.1016/S0043-1354(03)00332-4
  38. C.Y. Kuo, 'Prevenient Dye-degradation Mechanisms using UV/$TiO_2$/Carbon Nanotubes Process,' J. Hazard. Mater., (2008), doi:10.1016/j.jhazmat.2008.06.083
  39. E. Bizani, K. Fytianos, I. Poulios, and V. Tsiridis, 'Photocatalytic Decolorization and Degradation of Dye Solutions and Wastewaters in the Presence of Titanium Dioxide,' J. Hazard. Mater., 136 85-94 (2006) https://doi.org/10.1016/j.jhazmat.2005.11.017

Cited by

  1. Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light vol.21, pp.21, 2011, https://doi.org/10.1039/c1jm10301f
  2. Composites and Their Photocatalytic Activity Under Visible Light vol.48, pp.3, 2011, https://doi.org/10.4191/KCERS.2011.48.3.211
  3. Supported on AC Under Visible Light Irradiation vol.22, pp.2, 2012, https://doi.org/10.3740/MRSK.2012.22.2.91
  4. Impact of synthesis methods on nanosized silver modified titania photocatalysts vol.74, pp.4, 2012, https://doi.org/10.1134/S1061933X12040060
  5. hierarchical photoanodes for photoelectrocatalytic degradation of chlorinated phenols vol.20, pp.5, 2018, https://doi.org/10.1039/C7CP04888B
  6. Photocatalyst for the Formaldehyde Degradation at Room Temperature pp.00442313, 2018, https://doi.org/10.1002/zaac.201800315
  7. Catalytic performance of ZnFe2O4 nanoparticles prepared from the [ZnFe2O(CH3COO)6(H2O)3]·2H2O complex under microwave irradiation vol.45, pp.2, 2019, https://doi.org/10.1007/s11164-018-3607-6