DOI QR코드

DOI QR Code

Characteristics of Large Green and Sintered Alumina Ceramics by Filter Pressing

필터 프레싱으로 제조한 대형 알루미나 세라믹스 성형체 및 소결체의 특성

  • Lee, Hyun-Kwuon (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Cho, Kyeong-Sik (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Jang, Min-Hyeok (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Jang, Chul-Woo (Ceramics Division, Wonik Quartz Co.) ;
  • Kim, Sang-Mo (Ceramics Division, Wonik Quartz Co.) ;
  • Kim, Mi-Young (Ceramics Division, Wonik Quartz Co.)
  • 이현권 (금오공과대학교 신소재시스템공학부) ;
  • 조경식 (금오공과대학교 신소재시스템공학부) ;
  • 장민혁 (금오공과대학교 신소재시스템공학부) ;
  • 장철우 ((주)원익쿼츠 세라믹사업부) ;
  • 김상모 ((주)원익쿼츠 세라믹사업부) ;
  • 김미영 ((주)원익쿼츠 세라믹사업부)
  • Published : 2009.05.31

Abstract

The size of various alumina ceramics used in semiconductor and display industry is also required to increase with increase in wafer and panel size. In this research, large alumina ceramics was fabricated by filter pressing of alumina slurry using commercial powder and thereafter sintering at $1600^{\circ}C$ in gas furnace. The characteristics of large alumina ceramics thereby were compared to those of small alumina ceramics prepared by pressure forming such as uniaxial pressing and CIP. Careful control of properties of alumina slurry and filter pressing made the fabrication of large alumina ceramics possible, and its characteristics were equivalent to those of small alumina ceramics. The large alumina ceramics, prepared by sintering the green body of 63% relative density at $1600^{\circ}C$, exhibited both dense microstructure corresponding to 98.5% of relative density and 99.8% of high purity as in starting powder.

Keywords

References

  1. K. Masaki, N. Hisao, and K. Yuraka, 'Large-sized Alumina Products for Next Generation LCD (Liquid Crystal Display) Manufacturing(in Jpn),' Shinagawa Technical Report, 48 139-40 (2005)
  2. H. Toshio, O. Seizo, H. Akemi, K. Kazumasa, K. Nobuhisa, O. Kiichi, S. Yasuo, and S. Suguru, 'Preparation of Large Alumina Ceramics by Slip Casting,' Annual Report Ceramics Res. Lab., Nagoya Institute of Technology, 10 23-9 (2001)
  3. S-W. Lee and B-S. Jyeon, 'Preparation and Properties of Slip-casted Body using High-purity Alumina Powders(in Korean),' New Mater. Res., 14 77-81 (2002)
  4. C.-S. Lin and S.-T. Lin 'Effects of Granule Size and Distribution on the Cold Isostatic Pressed Alumina,' J. Mater. Pro. Tech., 201 [1-3] 657-61 (2008) https://doi.org/10.1016/j.jmatprotec.2007.11.159
  5. A. Kell and P. Blank, 'Grain Size Dependence of Hardness in Dense Submicrometer Alumina,' J. Am. Ceram. Soc., 78 1118-20 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08452.x
  6. A. Kell and P. Blank, 'The Influence of Shapping Method on the Grain Size Dependence of Strength in Dense Submicrometer Alumina,' J. Euro. Ceram. Soc., 16 1189-200 (1996) https://doi.org/10.1016/0955-2219(96)00044-1
  7. M. Liu, J. Takagi, and A. Tsukuda, 'Investigation of Strength Degradation and Strength Recovery via Short Time Heating for Ground Alumina Ceramics with Different Grain Size,' J. Mater. Proc. Tech., 145 279-80 (2004) https://doi.org/10.1016/S0924-0136(03)00465-5
  8. M. J. G. W. Heijman, N. E. Benes, J. E. ten Elshof, and H. Verweij, 'Quantitative Analysis of the Microstructural Homogeneity of Zirconia-Toughened Alumina Composites,' Mater. Res. Bull., 37 [1] 141-49 (2002) https://doi.org/10.1016/S0025-5408(01)00806-6
  9. M.D. Snel, G. De With, F. Snijkers, J. Luyten, and A. Kodentsov, 'Aqueous Tape Casting of Reaction Bonded Aluminium Oxide (RBAO),' J. Euro. Ceram. Soc., 27 [1] 27-33 (2007) https://doi.org/10.1016/j.jeurceramsoc.2006.02.034
  10. Y. Kurimoto, M. Takeda, S. Doi, Y. Tamura, and H. Ono 'Network Structures and Thermal Properties of Polyurethane Films Prepared from Liquefied Wood,' Bio. Tech., 77 [1] 33-40 (2001) https://doi.org/10.1016/S0960-8524(00)00136-X
  11. K. Lewandowska 'Miscibility and Thermal Stability of Poly(vinyl alcohol)/Chitosan Mixtures,' Thermo. Acta., to be published (2009) https://doi.org/10.1016/j.tca.2009.04.003
  12. S. Baklouti, J. Bouaziz, T. Chartier, and J. F. Baumard 'Binder Burnout and Evolution of the Mechanical Strength of Dry-pressed Ceramics Containing Poly(vinyl Alcohol),' Quaternary Sci. Rev., 21 [8] 1087-92 (2001) https://doi.org/10.1016/S0955-2219(00)00305-8
  13. A. Tsetsekou, C. Agrafiotis, I. Leon, and A. Milias, 'Optimization of the Rheological Properties of Alumina Slurries for Ceramic Processing Applications Part II: Spray-drying,' Quaternary Sci. Rev., 21 [4] 493-506 (2001)
  14. C. J. Oh, H. L. Lee 'Microstructure and Drying of The Alumina Green Body by the Gel-Casting Method,' J. Kor. Ceram. Soc., 31 [12] 1467-74 (1994)
  15. D.C.C. Lam and M. Nakagawa, 'Packing of Particles(Part 2)-Effect of Extra Pore Volume on Packing Density of Mixtures of Monosized Spheres,' J. Am. Ceram. Soc., 101 [1] 1234-38 (1994)
  16. D.C.C. Lam and M. Nakagawa, 'Packing of Particles(Part 3)-Effect of Particle Size Distribution Shape on Composite Packing Density of Bimodal Mixtures,' J. Ceram. Soc. Jpn., 102 [2] 133-38 (1994) https://doi.org/10.2109/jcersj.102.133
  17. N. Shinohara, S. Katori, M. Okumiya, T. Hotta, K. Nakahira, M. Naito, Y.-I. Cho, and K. Uematsu, 'Effect of Heat Treatment of Alumina Granules on the Compaction Behavior and Properties of Green and Sintered Bodies,' J. Euro. Ceram. Soc., 22 [16] 2841-48 (2002) https://doi.org/10.1016/S0955-2219(02)00059-6
  18. K. Sato, H. Abe, M. Naito, T. Hotta, and K. Uematsu, 'Structure of Strength- limiting Flaws in Alumina Ceramics Made by the Powder Granule Compaction Process,' Advan. Powder Tech., 17 [2] 219-28 (2006) https://doi.org/10.1163/156855206775992364
  19. C.-S. Lin and S.-T. Lin, 'Effects of Granule Size and Distribution on the Cold Isostatic Pressed Alumina,' J. Mater. Proc. Tech., 201 [1-3] 657-61 (2008) https://doi.org/10.1016/j.jmatprotec.2007.11.159
  20. S. Baklouti, T. Chartier and J.F. Baumard, 'Binder Distribution in Spray-Dried Alumina Agglomerates,' J. Euro. Ceram. Soc., 18 2117-21 (1998) https://doi.org/10.1016/S0955-2219(98)00107-1
  21. S. Baklouti, J. Bouaziz, T. Chartier and J.F. Baumard, 'Binder Burnout and Evolution of the Mechanical Strength of Dry-pressed Ceramics Containing Poly(vinyl alcohol),' J. Euro. Ceram. Soc., 21 1087-92 (2001) https://doi.org/10.1016/S0955-2219(00)00305-8
  22. I.J. Bae and S. Baik, 'Abnormal Gain Growth of Alumina,' J. Am. Ceram. Soc., 80 1149-56 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb02957.x
  23. S.H. Hong and D.Y. Kim, 'Effect of Liquid Content on the Abnormal Grain Growth of Alumina,' J. Am. Ceram. Soc., 84 1597-1600 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb00883.x
  24. I. Nettleship, R.J. McAfee, and W.S. Slaugher, 'Evolution of the Grain Size Distribution during the Sintering of Alumina at $1350^{\circ}$C,' J. Am. Ceram. Soc., 85 1954-60 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00387.x

Cited by

  1. Management of Fractures of Distal Tibia by Minimally Invasive Plate Osteosynthesis through an Anterior Approach vol.45, pp.6, 2010, https://doi.org/10.4055/jkoa.2010.45.6.473
  2. -C System in Fabrication Process vol.48, pp.4, 2011, https://doi.org/10.4191/KCERS.2011.48.4.293
  3. Fabrication of Large-Size Alumina by Pressure-Vacuum Hybrid Slip Casting vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.396
  4. Shape Forming of Alumina by Step Pressure-Vacuum Hybrid Slip Casting vol.217-219, pp.1662-7482, 2012, https://doi.org/10.4028/www.scientific.net/AMM.217-219.1899
  5. Correlation between Acoustic Intensity and Ground Particle Size in Alumina Ball Mill Process vol.55, pp.3, 2018, https://doi.org/10.4191/kcers.2018.55.3.06