DOI QR코드

DOI QR Code

Various Filler Added CaO-Al2O3-SiO2 Glass Composites for LTCC Substrate Applications

LTCC 기판재료 응용을 위한 다양한 충전제 함유 CaO-Al2O3-SiO2 유리복합체 연구

  • Kim, Kwan-Soo (Department of Ceramic Engineering, Kangnung-Wonju National University) ;
  • Jang, Ho-Soon (Department of Ceramic Engineering, Kangnung-Wonju National University) ;
  • Shin, Hyun-Ho (Department of Ceramic Engineering, Kangnung-Wonju National University) ;
  • Kim, In-Tae (Cermotech Co., Ltd., Gangnung Science & Industry Park) ;
  • Kim, Shin (Cermotech Co., Ltd., Gangnung Science & Industry Park) ;
  • Han, Yong-Hyun (Cermotech Co., Ltd., Gangnung Science & Industry Park) ;
  • Yoon, Sang-Ok (Department of Ceramic Engineering, Kangnung-Wonju National University)
  • Published : 2009.05.31

Abstract

Influences of ceramic filler types and dose on the sintering, phase evolution, and dielectric properties of ceramic/CaO-$Al_2O_3-SiO_2$ glass composites were investigated. All of the specimens were sintered at $900^{\circ}C$ for 2 h, which conditions are required by the lowtemperature co-firing ceramic (LTCC) technology. Ceramic fillers of $Al_2O_3,\;SiO_2$, kaolin, and wollastonite were used. The addition of $Al_2O_3$ filler yielded the crystalline phases of alumina and wollastonite, and the densification over 95% of the relative density was achieved up to 50 wt% addition of the filler. For the cases of the fillers of $SiO_2$, kaolin, and wollastonite, crystalline phases of quartz, mullite, and wollastonite formed, while the densification decreased monotonically with the filler addition. In overall, all the investigated fillers with 10 wt% addition resulted in a reasonable sintering (over 95 %) and low dielectric constants (less than 6), demonstrating the feasibility of the investigated composites for application to a LTCC substrate material with a low dielectric constant.

Keywords

References

  1. Y. J. Choi, J. H. Park, J. H. Park, S. Nahm, and J. G. Park, 'Middle- and High-Permittivity Dielectric Compositions for Low-Temperature Co-fired Ceramics,' J. Eur. Ceram. Soc., 27 [4] 2017-24 (2007) https://doi.org/10.1016/j.jeurceramsoc.2006.05.104
  2. M. Kono, H. Takagi, T. Tatekawa, and H. Tamura, 'High Q Dielectric Resonator Material with Low Dielectric Constant for Millimeter-Wave Applications,' J. Eur. Ceram. Soc., 26 [10-11] 1909-12 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.09.019
  3. Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology; pp. 1-17, Springer, Berlin, 2005
  4. Y. Kobayashi and E. Kato, 'Low Temperature Fabrication of Anorthite Ceramics,' J. Am. Ceram. Soc., 77 [3] 833-4 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb05373.x
  5. C. L. Lo, J. G. Duh, and B. S. Chiou, 'Low Temperature Sintering and Crystallisation Behaviour of Low Loss Anorthite-Based Glass-Ceramics,' J. Mater. Sci., 38 693-8 (2003) https://doi.org/10.1023/A:1021836326089
  6. C. J. Dileep Kumar, E. K. Sunny, N. Raghu, N. Venkataramani, and A. R. Kulkarni, 'Synthesis and Characterization of Crystallizable Anorthite-Based Glass for a Low-Temperature Cofired Ceramic Application,' J. Am. Ceram. Soc., 91 [2] 652-5 (2008) https://doi.org/10.1111/j.1551-2916.2007.02160.x
  7. J. H. Kim, S. J. Hwang, W. Y. Sung, and H. S. Kim, 'Effect of Anorthite and Diopside on Dielectric Properties of $Al_2O_3$/Glass Composite Based on High Strength of LTCC Substrate,' J. Mater. Sci., 43 4009-15 (2008) https://doi.org/10.1007/s10853-007-2231-4
  8. I. J. Choi and Y. S. Cho, 'Effects of Various Oxide Fillers on Physical and Dielectric Properties of Calcium Aluminoborosilicate-Based Dielectrics,' J. Electroceram., (In Press) https://doi.org/10.1007/s10832-007-9371-4
  9. T. Takada, S. F. Wang, S. Yoshikawa, S. J. Jang, and R. E. Newnham, 'Effect of Glass Additions on $BaO-TiO_2-WO_3$ Microwave Ceramics,' J. Am. Ceram. Soc., 77 [7] 1909-16 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb07070.x
  10. B. W. Hakki and P. D. Coleman, 'A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,' IRE Trans. Microwave Theory Tech., MTT-8 402-10 (1960) https://doi.org/10.1109/TMTT.1960.1124749
  11. C. L. Lo, J. G. Duh, B. S. Chiou, and W. H. Lee, 'Low-Temperature Sintering and Microwave Dielectric Properties of Anorthite-Based Glass-Ceramics,' J. Am. Ceram. Soc., 85 [9] 2230-5 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00440.x
  12. R. D. Shannon, 'Dielectric Polarizabilities of Ions in Oxides and Fluorides,' J. Appl. Phys., 73 [1] 348-66 (1993) https://doi.org/10.1063/1.353856
  13. H. Scholze, Glass:Nature, Structure and Properties; pp.318, Springer, New York, 1991
  14. A. A. Appen, 'Versuch zur Klassfizierung von Komponenten Nach Ihrem Einflub auf die Oberflachenspannung von Silikatschmelzen,' Silikattechnik, 5 11-3 (1954)
  15. R. M. German, Liquid Phase Sintering, Plenum Press, New York, 1985
  16. W. D. Kingery, 'Implications of Sintering Theries with Regard to Process Controls,' Tras. VIIth Inter. Ceram. Cong., 461-71 (1960)
  17. A. J. Bosman and E. E. Havinga, 'Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds,' Phys. Rev., 129 [4] 1593-600 (1963) https://doi.org/10.1103/PhysRev.129.1593
  18. D. A. Robinson, 'Measurement of the Solid Dielectric Permittivity of Clay Minerals and Granular Samples Using a Time Domain Reflectometry Immersion Method,' Soil Sci. Soc. Am. J., 3 705-13 (2004)
  19. W. Cai, T. Jiang, X.Q. Tan, Q. Wei, and Y. Li, 'Development of Low Dielectric Constant Calcium Silicate Fired at Low Temperature,' Electron. Comp. Mater., 21 16-8 (2002)
  20. H. Wang, Q. Zhang, H. Yang, and H. Sun, 'Synthesis and Microwave Dielectric Properties of $CaSiO_3$ Nanopowder by the Sol-Gel Process,' Ceram. Inter., 34 1405-8 (2008) https://doi.org/10.1016/j.ceramint.2007.05.001
  21. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramic; Vol. 2, pp. 205-6, John Wiley & Sons, New York, 1976

Cited by

  1. Low-Temperature Sintering and Microwave Dielectric Properties of MgO Ceramic with LiF Addition vol.50, pp.9, 2011, https://doi.org/10.1143/JJAP.50.09NF02
  2. Crystal structure and microwave dielectric properties of low temperature sintered MgO ceramic with LiF addition pp.2044-5326, 2012, https://doi.org/10.1557/jmr.2011.438
  3. Low-temperature sintering and microwave dielectric properties of LiF-doped 0.2Li2ZrO3–0.8MgO ceramics vol.29, pp.16, 2018, https://doi.org/10.1007/s10854-018-9505-2