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A Study for Spectral Properties of Preconditioner of Symmetric

Toeplitz Systems
Ran Baik*

Abstract

In [9], Tyrtshnikov proposed a preconditioned approach to derive a general solution from a
Toeplitz linear system. Furthermore, the process of selecting a preconditioner matrix from
symmetric Toeplitz matrix, which has been used in previous studies, is introduced. This research
introduces a new method for finding the preconditioner in a Toeplitz system. Also, through
analyzing these preconditioners, it is derived that eigenvalues of a symmetric Toeplitz 7" are very
close to eigenvalues of a new preconditioner for 7. It is shown that if the spectrum of the
preconditioned system C 'T is clustered around 1, then the convergence rate of the
preconditioned system is superlinear. From these results, it is determined to get the superliner at
the convergence rate by our good preconditioner (. Moreover, an advantage is driven by

increasing various applications i. e. image processing, signal processing, etc. in this study from the
proposed preconditioners for Toeplitz matrices. Another characteristic, which this research holds, is

that the preconditioner retains the properties of the Toeplitz matrix.
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In this paper we investigate a new precondi
tioner for preconditioned Teoplitz System. The
studies on the preconditioning symmetric positive
definite (SPD) Toeplitz matrices with circulant
matrices have been [1], [3], [4], [5]. Toeplitz
systems arise in a variety of practical applications
in engineering fields. For instance, in signal
processing, solutions of Toeplitz systems are
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required in order to obtain the filter coefficients
in the design of recursive digital filters[Chui,
Chan] and time-series analysis also involves
solutions of Toeplitz systems for unknown par
ameters of stationary autoregressive models
[3]. An iterative method for solving the SPD
system Ax=0b can be derived by minimizing

. . 1 .
the quadratic functional ExTA.z-bex with the

conjugate gradient (CG) method, and the unique
minimum gives the desired solution.

The convergence rate of the CG method dep
ends on the spectrum of A. In general, the CG
method converges faster if A has a small
condition number of clustered eigenvalues.

To accelerate its convergence rate, a pre—
conditioning step is often introduced at each
CG iteration, which leads to the PCG method.

A good choice of preconditioners for A is a
matrix P that approximates A well (in the
sense that the spectrum of the preconditioned
matrix P 'A is clustered around 1 or has a
small condition number), and for which the
matrix-vector product P v can be computed
efficiently for a given vector v. With such a
in principle the
preconditioned Ar= I;
A=PV2AP7 V2 z=P % and b=P %z, by
the CG method[3]. The idea of preconditioning
is a simple one but is now recognized as critical
to the effectiveness of the PCG method.

A Toeplitz preconditioner also has been

preconditioner, one solves

system where

proposed by Strang, and analyzed by Chan and
strang[3]. Strang’s Preconditioner .S is obtained
by preserving the central half diagonals of
A and using them to form a circulant matrix.
Since S is a circulant, the matrix-vector product
S v can be conveniently computed via fast
Fourier transformation (FFT) with O(nlogn)
operations. It has been shown [1] - [5] that a
eigenvalue class of §7'A4 is clustered around 1
except a finite number of outlier. The converg
ence rate of preconditioned iterative methods

12)

depends on the singular value or eigen-value
distribution of the preconditioned matrices.

In our research, we propose a new type of
preconditioners Cj for Toeplitz matrices as the

following. We discuss about spectral properties
of a circulant preconditioner C, in Section 2
and how to develop a circulant preconditioner
C, for Toeplitz 7, in Section 3. It describes
the eigenvalues distributions of C,'7,, C,, S
and 7, in section 4. The concluding remarks

are given in Sections 5.

2. Spectral properties of a new

circulant preconditioner

we denote 7, by the set of n by n matrices

and Toeplitz matrices, respectively:

ty ot e t,—1
T, =4 |1 : < M,.
t*l(nfl)“. t*l tO

We denote by T,ZR the set of all real symmetric
Toeplitz matrices:
ty t -
t - .

—1

n

TR

n

ol < T,(R) (1)
t—l(n—l)"' iyt

and by T,f{ the set of all hermitian Toeplitz

matrices:
ty -1

S 7.0 @
t1(a—1) byt

is called a c

n

A Toeplitz matrix C=lc,|E T,

irculant if ¢; = ¢y, 4 - moan0 < 4J < N—1, 1. e
G G Cn—1
— C, _1 C :
C= n=1 0 eT,
: . o



From the structure of the circulant matrix,
we see that C=cyl+eJ++c, J' ' where

o 1 0 - 0

Therefore, every circulant matrix is generated

by a simple permutation matrix J.

wh— 1) F*
n—1

n—1 n—1
= Fdiag( ch, E cjw'7,- -, Ecjwj(nfl) VF"
j=0 j=0 j=0

Thus, C= F(cyl+c, ++c

n—1

n—1
where Zc]—w]‘(k’*l) is the kth eigen-value,
j=0

(1 w(k*l)._. w(k*l)(nfl))TE C" and

5~

Y 2T .. 21w .
w =/ = cos =~ ~isin=~ s the correspond

-ing kth eigen-vector of C for k=1,2,...,n.

We denote by C, the set of all circulant

matrices. Because all circulant matrices are
generated by J, C, forms a commutative ring

over real or complex field. Also it should be
noted that C, is completely characterized by
the diagonalizability under F—unitary similarity.
Thus, C, is a very special commutative subclass

of the normal Toeplitz matrices. We denote by

C’f the set of real symmetric circulant matrices

and T,F the set of real symmetric Toeplitz

matrices:

R_ {ﬂf(ctJvclv"'vckvck17“'701) 3)

n R
Tn (co,cl,-“,ck,l,ck,ck,- "701)

_ |
where k—[Q].

Let 7= TF Choose C,=CF such that

17— Cllz=min lim 17— Al 1t is known that if
cecf

T= T, (tgty,- t,_ )E T, then

Cy = TH(cy ey, o0 v00,) € CF such that

gto _y+(n—j)t,
¢ = (n—3) N =0, k. (4)
n

Thus, (4) gives the formula for the initial
symmetric circulant matrix choice for this case.
Note that .

D\j*aﬁ < zjo()\j*ajy < ||T— C0||fL
iz

where )\j and « are the eigenvalues of the

matrices 7 and C(j, respectively. Thus, if
17— Gl is small then the eigenvalues of G

are close to the corresponding eigenvalues of
T and we have a good choice of the precondit
ioner.

Let C” be the set of real symmetric circula
nt matrices in (3). We denote by C? the set

of hermitian circulant matrices:

)

. —
T, (cgrersm =€ 15Cp 1o e5€1)
o =

n H
T, (cgrerr =€ 1:Cp o=+ 1)

where k= [ﬂ and 77 in (2).

2
Note that Cf is the F—real diagonalizable
cec” if and only if
C= Fdiag(oal, --',an)F*

class of matrices:

where o,€R  for
t1=1,---,n. It can be verified easily that
cfc " has the following finer spectral
cecf it and  only if
C'= Fdiag(a --,a,) F* o, ER - for

characteristic:
where
1 =1,---,n such that the algebraic multiplicity
of each «; must be greater than or equal

to 2, that is, there is no simple eigen value fo
r real symmetric circulant matrices. A Toeplitz
matrix K= [k;|E€ 7, is called a skew circulant ma

n
trix if

k.= Cji
R G

Thus, K=ky,+k ,+k,++k, L" ' where

foro<i<j<n—1
for0<j<i<n—1.
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0 1 0 0
1
L= 0 i e M,
-1 0 0

Note that P LP = 6.J where

P=diag(1,6,6%--,0"""), 6= ¢"" and
"= —1.

Therefore, P'KP= kyl+ 0k, J+0*k,J*+ - -

+0" 'k, J e,

and hence F P KPE is a diagonal matrix. It
is easy to identify that P LP =0°J for any
odd number s =1,3,--- and K is diagonalizab
le under P°F—unitary similarity for s = 1,3, .

Note that J=FWF and J"=F WF where
Pl=Ww= diag(l,w,uﬂ;",a)”*]), w= e(%i)/n,

hence F PF must be a square root of J7T..

Note that we need only to consider for
s=1,---,2n— 1, because of P®*V=p"p
=P. We denote by K, = T, the set of all skew
circulant matrices, and by Kf’g K the set of

n

all real symmetric skew circulant matrices.

Lemma 1: The following are equivalent.
() KeK™ (i) K is P*F—real
diagonalizable for s=1, 3, 5, -+, 2n—1
i.e., KZF*P‘;diag(al,man)PSF, o, ER
Gii) P*KP*ECH for s=1, 3, 5, -, 2n—1
Proof) (i) = (iii)

Suppose KEK" is a

given real symmetric skew circulant matrix. C
onsider the set

G= {PS‘KPS}S:L&m‘,anl
—{w' P rrPwl,_, |
= { W* C(O> W}1 =0,---,n—1

where C'” is a hermitian circulant matrix,
P=diag(1,0,---,0""') and
W= diag(1,w, "), g =ei™/m,

Since FWF = J,
G={F(FW'F'FCOF FW F)F},_,.
= {F*(Ji*diag(al,'~-,an)f)F}
= {O(i)}i:0,~-~,nfl caf

n

n—1

i=0,n—1

where {ay,--,a,} are the eigenvalues of K.

(i) = (i)

P’ kP ch, F7EPFis a diagonal. Thus,

K is P°F— real diagonalizable for s=1,3,5,

-y, 2n—1.

(i) = @)

Let CF= C)(G) be the convex hull of G, i.e.,
the set of all convex combination of the matrices
from G.

We present the following general result about
hermitian matrices. We denote by H, the set

of all n by n hermitian matrices. Suppose

A 0

AE}[m A=V . V*7/\iER
0 An

and V€M, is unitary.

By D, we denote the set of all real diagonal
matrices, D= {diag(a;. . o,)/o;ER}.
For a,b € R, a>=1b, we let D(a,b)=

{diag (o, -,a,) /b < o; < aforall i = 1,--,n}
c D.

A subset D¥*(a,b) = {diag(oal,-",ozn) /E a;=s

i=1
and b < o; < a}.

Theorem 2: Suppose

A\ 0
A=V V' €H,
0 A

n

Let s=3,\. Then miny._Jl4— 5,

i=1
N VESS

T MULSE DO A
Jl4— 5,

TMIM g gy 2

max)A\min

As a simple consequence of Theorem 2, we
have the following.



Corollary 3 : Let K= K" be given. Then
min .l — Clly=min ce ¢ ()15, — Clly
where CO(G’) is the convex hull of

G = {WL P [(()PW‘LP}j:O‘.“‘nfl

= F'(J" diag(a,..a,)j ) F}
={cVe Cf}izlﬁ.“,".

i =0, n—1

3. A generation of circulant

approximations

Now suppose 7€ Tf. We define 7,
the complement of 7" by 7¢€ T

. +7°¢ - 7°¢
Then notice that 7= r 2T + r 2T where
T+ 7° - 7°¢
Dl eqr and T exy?
Thus we have 7= Cp+ K 6)

where C,= Cfand K, K", and it is easy to
verify that the decomposition is unique. Note that

m |7— Clll, = minCUCCHHHCT-i— Ky— Gl

ing_ el
= minG]EQHHCT—FKT— (Cp+ O,
< minq’;QlH\lKT— Cl,
where the last equality is from the Corollary 3.
Since the object of this section is to obtain
an initial hermitian circulant matrix, it is clear
from above equality that we need to only consider
a hermitian circulant matrix from the convex
hull of {P K P, P(W" " K, W' )P} We
use the following steps to choose the initial
hermitian circulant matrix for 7€ T,,f{.
Set S(a.f) =aP K P+3P WK, WP,
a,f>0, at+p=1.
_ ”KT_S(OC7ﬁ)”2
||CT+S(a7ﬂ)”2
a=0,0.1,---,0.9,1.
Then the initial circulant matrix .S of given
the

Compute v(a,3) for

T

is hermitian  circulant  matrix

Cy= Cr+S(a,3) with the minimum values of

fy(a,ﬂ) where 7'= Cy+ K, Some examples of
the distribution of the eigenvalues of 7' and
C,e C" are given in Section 4.

Example: Choice of the scalars a and f.
We choose a and 3, a+ =1 such that

1K= S, B,
o, +50a.pl,
Suppose Y(ag,fy) =ming -, 5 y(.f),
a+B=1. Then Cy= Cp+5(y3,)-

v, 3) is the minimum.

We provide the following two examples.

1
(a) 7= THt,,-,t,)such that t, =
wh ) C(i+1)?
for i=0,---,49. «,=0.7, 3,=0.3
R, _ (_1)i
(b) T TH¢,--,t,) such that t, = —
i+1

for i=0,---,49. o, =1.0,6,=0.3
Find «, and 3, and 3, such that v(a,3)
is minimized. Then

Cy= Crta,P K P+ [,P W K, WP.
4. Numerical experiments

In this section, we compare our hermitian
circulant preconditioner ¢, with Strang’s cir-

culant preconditioner §,.

iy

tAVf M

t2 —M tl - Jrlt]\'f M)

tN*]lI ° * t271l1t17J] .

n=

boartn-ar ta ty_ar

According to Strang’s proposal shown above
in the given matrix, we construct preconditioner

S, by preserving n consecutive diagonal in 7
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and bring them around to form a circulant matrix.
We compare with Strang preconditioners, S, and
our preconditioner C; from the distribution of
eigenvalues based on the objective matrix 7" with
example (a), (b) (Figure 1, 2). We also have
a experiment for eigenvalue distributions of
Cy ' T with example (a), (b) (Figure 3).

005 1 % A B M B N & &

0 5 0 5 W X B ¥ 4 5 &

(Figure 1) Eigenvalue Distribution of .5, and
T for given example (a), (b)

(Figure 2) Eigenvalue Distribution of

and 7 for given example (a), (b)

(Figure 3) Eigenvalue Distribution of
Cy ' T for given example (a), (b)

5. Conclusions

From (Figure 1, 2) our new preconditioner

C, is closer than Strang preconditioners S, to

Toeplitz 7. We can apply a new and better
preconditioner ( instead of the given matrix
T by the iterative method for Toeplitz systems.
We expect all eigenvalues of the given Toeplitz
matrices to be close to all eigenvalues of new
circulant preconditioners (Figure 2).

Also the distributions of eigenvalues of
Cy ' T are between 0.6 and 1.2 and are between
0.5 and 1.3 (Figure 3) as shown in section 3.
We have the property that all eigenvalues of
Cy ' T are very close to 1 excluding the extreme
eigenvalues. It supports to reduce the iterations
for the iterative method on the Toeplitz system.

The objective matrix for case (a) is a sym
17— ¢yt 1.
~1.1591 and (b) is a symmetric matrix and
17— Cy ' 11, ~ 8.3689.

metric  positive matrix and
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