Exploring Structure-Activity Relationships for the In vitro Cytotoxicity of Alkylphenols (APs) toward HeLa Cell

  • Kim, Myung-Gil (Gyeonggi-do Public Health and Environment Research Institute) ;
  • Shin, Hye-Seoung (Hankyong National University Analysis Center) ;
  • Kim, Jae-Hyoun (Department of Health Science, School of Natural Science, Dongduk Women's University)
  • Published : 2009.03.31

Abstract

In vitro cytotoxicity of 23 alkyl phenols (APs) on human cervical cancer cell lines (HeLa) was determined using the lactate dehydrogenase (LDH) cytotoxicity assay. Two different sets of descriptors were used to construct the calibration model based on Genetic Algorithm-Multiple Linear Regression (GA-MLR) based on the experimental data. A statistically robust Structure-Activity Relationships (QSAR) model was achieved ($R^2$=95.05%, $Q^2_{LOO}$=91.23%, F=72.02 and SE= 0.046) using three Dragon descriptors based on Me (0D-Constitutional descriptor), BELp8 (2D-Burden eigenvalue descriptor) and HATS8p (3D-GETAWAY descriptor). However, external validation could not fully prove its validity of the selected QSAR in characterization of the cytotoxicity of APs towards HeLa cells. Nevertheless, the cytotoxicity profiles showed a finding that 4-n-octylphenol (4-NOP), 4-tert-octyl-phenol (4-TOP), 4-n-nonylphenol (4-NNP) had a more potent cytotoxic effect than other APs tested, inferring that increased length and molecular bulkiness of the substituent had important influence on the LDH cytotoxicity.

Keywords

References

  1. O'Brien, P. & Haskins, J. R. In vitro cytotoxicity assessment. Methods Mol Biol 356:415-425 (2007) https://doi.org/10.1385/1597452173
  2. Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44-84 (2007) https://doi.org/10.1016/j.biocel.2006.07.001
  3. Haavisto, T. E. et al. Effects of 4-tert-octylphenol, 4-tert-butylphenol, and diethylstilbestrol on prenatal testosterone surge in the rat. Reprod Toxicol 17:593-605 (2003) https://doi.org/10.1016/S0890-6238(03)00103-5
  4. Dreiem, A., Ring, A. & Fonnum, F. Organic solventinduced cell death in rat cerebellar granule cells: Structure dependence of c10 hydrocarbons and relationship to reactive oxygen species formation. Neurotoxicology 26:321-330 (2005) https://doi.org/10.1016/j.neuro.2005.01.006
  5. Nair-Menon, J. U. et al. Toxic effects of octylphenol on cultured rat and murine splenocytes. Toxicol Appl Pharmacol 139:437-444 (1996) https://doi.org/10.1006/taap.1996.0185
  6. Pretorius, E. et al. Ultrastructural effects of low dosage endocrine disrupter chemicals on neural cells of the chicken embryo model. Horm Metab Res 38:639-649 (2006) https://doi.org/10.1055/s-2006-954592
  7. Okai, Y. et al. Protective effect of antioxidants against para-nonylphenol-induced inhibition of cell growth in Saccharomyces cerevisiae. FEMS Microbiol Lett 185:65-71 (2000) https://doi.org/10.1111/j.1574-6968.2000.tb09041.x
  8. Okai, Y. et al. Enhancing effect of the endocrine disruptor para-nonylphenol on the generation of reactive oxygen species in human blood neutrophils. Environ Health Perspect 112:553-660 (2004) https://doi.org/10.1289/ehp.6584
  9. Li, H. M. et al. Protection against nonylphenol-induced cell. death by DJ-1 in cultured Japanese medaka (Oryzias latipes) cells. Toxicology 228:229-238 (2006) https://doi.org/10.1016/j.tox.2006.08.040
  10. Hughes, P. J. et al. Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum Ca(2+) pumps. Biochem Biophys Res Commun 277:568-574 (2000) https://doi.org/10.1006/bbrc.2000.3710
  11. Qian, J. et al. Octylphenol induces apoptosis in cultured rat Sertoli cells. Toxicol Lett 166:178-186 (2006) https://doi.org/10.1016/j.toxlet.2006.06.646
  12. Kim, S. K. et al. Nonylphenol and octylphenol-induced apoptosis in human embryonic stem cells is related to Fas-Fas ligand pathway. Toxicol Sci 94:310-321 (2006) https://doi.org/10.1093/toxsci/kfl114
  13. Leo, A. J. & Hansch, C. Role of hydrophobic effects in mechanistic QSAR. Perspect Drug Discovery Des 17:1-25 (1999) https://doi.org/10.1023/A:1008762321231
  14. Hansch, C. et al. Comparative QSAR evidence for a free-radical mechanism of phenol-induced toxicity. Chem Biol Interact 127:61-72 (2000) https://doi.org/10.1016/S0009-2797(00)00171-X
  15. Moridani, M. Y. et al. Quantitative structure-toxicity relationships for phenols in isolated rat hepatocytes. Chem Biol Interact 145:213-223 (2003) https://doi.org/10.1016/S0009-2797(02)00258-2
  16. Escher, B. I. et al. Kinetic model to describe the intrinsic uncoupling activity of substituted phenols in energy transducing membranes. Environ Sci Technol 33:560-570 (1999) https://doi.org/10.1021/es980545h
  17. Liu, X. et al. Quantitative structure activity relationship (QSAR) for toxicity of chlorophenols on L929 cells in vitro. Chemosphere 64:1619-1626 (2006) https://doi.org/10.1016/j.chemosphere.2006.04.091
  18. Selassie, C. D. et al. QSAR for the cytotoxicity of 2- alkyl or 2,6-dialkyl, 4-X-phenols: the nature of the radical reaction. J Chem Soc Perkin Trans 2:1112-1117 (2002) https://doi.org/10.1039/b201478e
  19. Selassie, C. D. et al. Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structureactivity relationship study. J Med Chem 48:7234-7242 (2005) https://doi.org/10.1021/jm050567w
  20. Muller, M. T. et al. Membrane toxicity of alcohol ethoxylates. Environ Toxicol Chem 18:2767-2774 (1999) https://doi.org/10.1002/etc.5620181217
  21. Boge, G. & Roche, H. Cytotoxicity of phenolic compounds on Dicentrarchus labrax erythrocytes. Bull Environ Contam Toxicol 57:171-178 (1996) https://doi.org/10.1007/s001289900171
  22. Veith, G. D. & Broderius, S. J. Rules for distinguishing toxicants that cause type I and type II narcosis syndromes. Environ Health Perspect 87:207-211 (1990) https://doi.org/10.2307/3431026
  23. Siraki, A. G. et al. Quantitative structure-toxicity relationships by accelerated cytotoxicity mechanism screening. Curr Opin Drug Discov Devel 7:118-125 (2004)
  24. Lewis, D. F. & Dickins, M. Quantitative structureactivity relationships (QSARs) within series of inhibitors for mammalian cytochromes P450 (CYPs). J Enzyme Inhib 16:321-337 (2001) https://doi.org/10.3109/14756360109162380
  25. Selassie, C. D. et al. On the toxicity of phenols to fast growing cells. A QSAR model for a radical-based toxicity. J Chem Soc Perkin Trans 2:2729-2733 (1999) https://doi.org/10.1039/a905764a
  26. Takahata, Y. et al. Core-Electron Binding Energy (CEBE) as descriptors in Quantitative Structure Activity Relationship (QSAR) analysis of cytotoxicities of a series of simple phenols. QSAR Comb Sci 26:378 (2007) https://doi.org/10.1002/qsar.200630007
  27. Loader, R. J. et al. The cytotoxicity of ortho alkyl substituted 4-X-phenols: a QSAR based on theoretical bond lengths and electron densities. Bioorg Med Chem Lett 16:1249-1254 (2006) https://doi.org/10.1016/j.bmcl.2005.11.079
  28. Chan, K. et al. Structure-activity relationships for halobenzene induced cytotoxicity in rat and human hepatoctyes. Chem Biol Interact 165:165-174 (2007) https://doi.org/10.1016/j.cbi.2006.12.004
  29. Decker, T. & Lohmann-Matthes, M. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Meth 15:61-69 (1988) https://doi.org/10.1016/0022-1759(88)90310-9
  30. Strubelt, O. et al. The toxic and metabolic effects of 23 aliphatic alcohols in the isolated perfused rat liver. Toxicol Sci 49:133-142 (1999) https://doi.org/10.1093/toxsci/49.1.133
  31. Fotakis, G. & Timbrell, J. A. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT, and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171-177 (2005) https://doi.org/10.1016/j.toxlet.2005.07.001
  32. Konjevic, G. et al. Correction of the original lactate dehydrogenase (LDH) release assay for the evaluation of NK cell cytotoxicity. J Immunol Methods 200:199-201 (1997) https://doi.org/10.1016/S0022-1759(96)00194-9
  33. Cronin, M. T. D. et al. The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSARs for toxicological endpoints. SAR QSAR Environ Res 13:167-176 (2002) https://doi.org/10.1080/10629360290002316
  34. Eriksson, L. et al. Modelling the cytotoxicity of halogenated aliphatic hydrocarbons. Quantitative structureactivity relationships for the IC50 to human HeLa cells. Quant Struct-Act Relat 12:124-131 (1993) https://doi.org/10.1002/qsar.19930120203
  35. Eisenberg, A. & Eu, B. C. Mechanical spectroscopy: An introductory review. Ann Rev Mater Sci 6:335-359 (1976) https://doi.org/10.1146/annurev.ms.06.080176.002003
  36. Hansch, C. & Leo, A. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology. ACS Professional Reference Book. American Chemical Society 1:557-1037 (1995)
  37. Babij, C. & Poe, A. J. Deconstruction of Taft's $\sigma^{\ast}$ parameter: QSAR meets QALE. J Phys Org Chem 17:162-167 (2004) https://doi.org/10.1002/poc.708
  38. Hansch, C. et al. A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165-195 (1991) https://doi.org/10.1021/cr00002a004
  39. Consonni, V. et al. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors: 1. Theory of the novel 3D molecular descriptors. Chem Inf Comput Sci 42:682-692 (2002) https://doi.org/10.1021/ci015504a
  40. Hemmateenjad, B. et al. A mechanistic QSAR study on the leishmanicidal activity of some 5-substituted- 1,3,4-thiadiazole derivatives. Chemical Biology and Drug Design 69:435-443 (2007) https://doi.org/10.1111/j.1747-0285.2007.00523.x
  41. Nakagawa, Y. & Tayama, S. Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Arch Toxicol 74:99-105 (2000) https://doi.org/10.1007/s002040050659
  42. Lueken, A. et al. Synergistic DNA damage by oxidative stress (induced by H2O2) and nongenotoxic environmental chemicals in human fibroblasts. Toxicol Lett 147:35-43 (2004) https://doi.org/10.1016/j.toxlet.2003.10.020
  43. Bashford, L. & Knox, P. Membrane-mediated cytotoxicity: From biophysics to medicine. BioEssays 5: 134-135 (2005) https://doi.org/10.1002/bies.950050311
  44. Harman, C. et al. Uptake rates of alkylphenols, PAHs and carbazoles in semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). Chemosphere 72:1510-1516 (2008) https://doi.org/10.1016/j.chemosphere.2008.04.091
  45. Todeschini, R. & Consonni, V. Handbook of Molecular Descriptors, Wiley-VCH Weinheim, Germany, p. 667 (2000)
  46. Todeschini, R. et al. Software for Regression and Classification Models by Genetic Alghorithms. In Nature-inspired Methods in Chemometrics: Genetic Alghortims and Artificial Neural Networks (Leardi, R., ed.), Elsevier 374-385 (2003)
  47. Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694-701 (2007) https://doi.org/10.1002/qsar.200610151