DOI QR코드

DOI QR Code

Large Eddy Simulation of Turbulent Flows over Backward-facing Steps

후향 계단에서 난류 유동에 대한 대와동모사

  • 황철홍 (미국립표준기술연구소) ;
  • 금성민 (한라대학교 기계자동차공학부)
  • Published : 2009.03.31

Abstract

Large eddy simulation code was developed to predict the turbulent flows over backward-facing steps including a recirculating flow phenomena. Localized dynamic ksgs-equation model was employed as a LES subgrid model and the LES solver was implemented on parallel computer consisting of 16 processors to reduce computational costs. The results of laminar flow showed qualitative and quantitative agreements between current simulations and experimental results availablein literatures. The simulation of the turbulent flows also yielded reasonable results. From these results, it can be expected that developed LES code will be very useful to analyze the combustion in stabilities and noise of a practical combustor in the future.

본 연구에서는 재순환 유동 현상을 포함하는 후향 계단에서 난류 유동장에 대한 LES의 예측성능을 검토하였다. LES의 난류모델로서 Localized Dynamic ksgs-equation 모델이 적용되었으며, 계산시간의 절감을 위하여 16개의 프로세서를 이용한 병렬계산이 수행되었다 후향 계단의 층류 유동에 대한 직접수치모사(DNS)의 수행 결과, 본 계산 결과는 기존의 실험 및 수치결과를 매우 잘 예측하였다. 또한 중간 및 높은 Re 수에 해당되는 난류 영역의 LES 결과는 평균 재순환 유동특성을 비교적 잘 예측하였다. 위 결과를 통해 본 연구에서 개발된 LES 프로그램은 향후 실용 연소기에서 연소 불안정성 및 연소 소음 등의 해석에 유용할 것으로 기대된다.

Keywords

References

  1. Syred, N., Chigier, N. A. and Beer, J. M. "Flame stabilization in recirculation zones of jets with swirl," Proceeding of Combustion Institute, Vol. 13, pp. 617-624, 1971. https://doi.org/10.1016/S0082-0784(71)80063-2
  2. Poinsot, T. and Veynante, D. "Theoretical numerical combustion," Edwards, 2001.
  3. Le, H. and Moin, P. "Direct numerical simulation of turbulent flow over backward-facing step," Report TF-58, Dept. of Mech. Eng., Stanford Univ., 1994.
  4. Arrnaly, B. F., Durst, F., Pereira, J. C. F. and Schonung, B. "Experimental and theoretical investigation of backward-facing step flow," J. Fluid Mech., Vol. 127, pp. 473-496, 1983. https://doi.org/10.1017/S0022112083002839
  5. Jovic, S. and Driver, D. M. "Backward-facing step measurement at low Reynolds number, $Re_h=5000$," NASA Tech. Mem. 108807, 1994.
  6. Pitz, R. W. and Daily, J. W. "Combustion in a turbulent mixing layer formed at a rearward-facing step," AIAA Journal, Vol. 21, No. 11, pp. 1565-1570, 1983. https://doi.org/10.2514/3.8290
  7. Menon, S., Yeung, P. K. and Kim, W. W. "Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence," Computers and Fluids, Vol. 25, No.2, pp. 165-180, 1996 https://doi.org/10.1016/0045-7930(95)00036-4
  8. Kim, W. W. and Menon, S. "A new dynamic one-equation subgrid-scale model for large-eddy simulation," AIAA-95-0356, 1995
  9. MacCormack, "The effects of viscosity in hyper-velocity impact cratering," AIAA Paper 69-354, 1969
  10. Poinsot, T. J. and Lele, S. K. "Boundary conditions for direct simulations of compressible viscous flows," J. Computational Physics, Vol. 101, pp. 104-129, 1992 https://doi.org/10.1016/0021-9991(92)90046-2
  11. Chiang, T. P. and Sheu, T. W. "A numerical revisit of backward-facing step flow problem," Physics and Fluids, Vol. 11, No.4, pp. 862-874, 1992.
  12. Guerrero, J. S. P. and Cotta, R. M. "Benchmark integral transform results for flow over a backward-facing step," Computer and Fluids, Vol. 25, pp. 527-540, 1996. https://doi.org/10.1016/0045-7930(96)00005-9
  13. Klein, M., Sadikj, A. and Janicka, J. "Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation," Int. J. Heat & Fluid Flow, Vol. 24, pp. 785-794, 2003. https://doi.org/10.1016/S0142-727X(03)00089-4
  14. Weller, H. G., Tabor, G., Gosman, A. D. and Furebby, C. "Application of flame-wrinkling LES combustion model to a turbulent mixing layer," Proceeding of the Combustion Institute, Vol. 27, pp. 899-907, 1998. https://doi.org/10.1016/S0082-0784(98)80487-6