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Abstract

This paper describes an application of domain decomposition method for paralle] finite element analysis which is required to
large scale 3D structural analysis. A parallel finite element method system which adopts a domain decomposition method is
developed. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node
spacing function is well controlied by the fuzzy knowledge processing. The Delaunay triangulation method is introduced as a basic
tool for element generation. Domain decomposition method using automatic mesh generation system holds great benefits for 3D
analyses. Aa parallel numerical algorithm for the finite element analyses, domain decomposition method was combined with an
iterative solver, ie. the conjugate gradient(CG) method where a whole analysis domain is fictitiously divided into a number of
subdomains without overlapping. Practical performance of the present system are demonstrated through several examples.

Keywords @ delaunay triangulation method, automatic mesh generation, domain decomposition method, parallel
computing, finite element analysis, conjugate gradient

1. Introduction influences computational accuracy as well as efficiency

and whose fully automation is very difficult in three-

Loads for pre-processing and post-processing are dimensional(3D) cases, has become the most critical
increasing rapidly in accordance with an increase of issue in a whole process of the finite element(FE)
scale and complexity of analysis models to be solved. analyses. In this respect, various researches(Anglada

Particularly, the mesh generation process, which et al., 1999; Watson, 1991; Lee, 2002: Shephard

et

T AR, FEHd Heta ZIAA 2R g g wg o] EFo] i BEL 20099 49 3097HA] £ glo] HifFA
Tel: 031-249- 9813 ; Fax: 031-244-6300 920099 683l 1 ZFHE AAAFUT

E-mail: jsleel @kyonggi.ac.kr
* B Toyo University Al4tEetat wmd
A7 gm g HA1es
gy g

BT ASE R =wd M22W A15(2009.2)

35



FAEgHl 7t

tio

£ 92 fEasgy An

o,

al., 1991; Nguyen et al., 1991: Berzins, 1999;
Taniguchi et al. 1991) have been performed on the
development of automatic mesh generation techniques.

In domain decomposition method(DDM), a whole
domain to be analyzed is fictitiously divided into a
number of subdomains and each subdomain is subdivided
into continuous elements without overlapping to be
analyzed by FEM. Therefore, for the DDM system,
another mesh generator which decomposes mesh into
subdomains, is needed in addition to the normal mesh
generator for the FEM system

The present authors have developed an automatic
FE mesh generation technique, which is based on the
fuzzy theory(Zadeh, 1983; Lee, 1995) and computa-
tional geometry technique, is incorporated into the
system, together with one of commercial solid modelers
(Lee, 2004: Choi et al., 2006). In the present study,
to support the DDM analysis system which require
such special mesh, an automatic mesh generation and
domain decomposition system combined with the
automatic mesh generation system. Also, the above
technique is applied to DDM combined with an
iterative solver. The FE analyses of each subdomain is
performed in parallel. And the system using DDM
algorithms is successfully applied to incremental
formulations of 3D structural problem.

In the next version, the present system will be
applied to 3D elasto-plastic structural problem of
over one million DOF.

2. Domain Decomposition Method with CG Algorithm

In the present domain decomposition method, a
whole domain to be solved is first divided into a
number of subdomains with out overlapping, and a
solution is obtained iteratively in each subdomain
considering the force balance and the compatibility
condition is satisfied exactly, while the force

balance condition is satisfied in a weak manner.

2.1 Fundamental Equations

The present DDM is summarized in the following.
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To explain its theory, let us consider an elastic
problem concerning a domain &, as shown in Fig. 1.
Here, T is the traction force applied on the
boundary Iy, B the body force applied in the
domain , and u the prescribed displacement on
the boundary I, .

Fundamental equations of this elastic problem are

summarized in an infinitesimal displacement mode

as follows:
€ = %(um +u,,) in Q 1)
01; = Cljmn€mn D Q 2
0+ Bi=0inQ (3)
O'ijyjl/»—?i =0 on Iy (4)
w; =u, on I, (5)

where i, j take the value 1 to 3, v, is a displacement
vector, ¢; a strain tensor, o;; stress tensor, Cymn a
coefficient tensor of the Hooke's law and v; an outer
normal vector on the boﬁndary I, respectively. ( );
denotes the first order derivative with respect to the
coordinate z;.

The above variational from is equivalent to the
following minimization problem which finds the
displacement function u which is a stationary point

of the energy functional :

Jw)= l/ iﬁ,dﬂ—‘/ Evidﬁ—‘/fvidf (6)
2 £2 7 2 r

As shown in Fig. 2, after dividing domain @ into

N; subdomains, (£),_,., with =, being the

interface between 2® and 2@, solving the above

problem is equivalent to finding the displacement

(@)

functions ' which are stationary points of the

energy functional:

W)= g0 () (7)
+J(2)(v(2)) _i_m_i_J(JVd)(v(Nd))

J/ (U(1)7 b ]

with additional conditions on the interface boundary



Fig. 1 Analysis domain

Fig. 2 Analysis domain split into subdomain

Vg -
u® =49 op Yo (8)
oD+ oD = 0 on ©

where the superscripts( )@

defined in the subdomains 2.

Depending on the treatment of additional interface
boundary conditions of equations (8) and (9), the
following two approaches are available : In the first

approach, equation (8) is satisfied exactly, while

designate variable

equation (9) is approximately satisfied, and vice versa
in the second approach.

Although both the approaches are valid in principle,
the first formulation involves fully Neumann tye
calculations, which often generates floating domains
that to not have enough prescribed displacement to
eliminate the local rigid body modes. The second
approach is thus thought to be more appropriate.

With the use of a Lagrange multiplier method,
solving the equation (7) with the subsidiary condition
(9) is equivalent to finding the saddle-point of the

Lagrangian functional :

£L ('U(l)a ey U(Nd> ) /}4(1)7 vy M(M>) = Z J(d) (U(d)) (10)
N d
+ Ef ,uTC(v(p) v(‘I))dfy
P Y My
where
C(U(p), ,U(q)) — O.Z(?)ng) +U§?)U§‘q) 11)

and N; is total DOF on interface +,. The above
problem can be equivalently converted to finding

@

the displacement functions »'“ and the interface

Lagrange multipliers 29D that satisfy :

(12)

for any admissible (v*), _,_, and (1), _, . .

We can solve this saddle-point problem (12) by a
saddle-point solver such as Uzawa's algorithm or
its CG variants{Shioya et al., 2003). Let us
describe the CG method to solve the equation (12)

in next section.
2.2 CG Method for DDM

Defining the positive definite and symmetric

operator A:

A9= €O (), 1 (1) (13)
where
u(”)(u)::u(q)(,u):u(i> on Y, (14)

the CG algorithm for solving equation (12) is

summarized as follows:

Step 0@ Initialization
()

w* o arbitrarily given (15)
g<i)° :Am(i)o 16)
W = g 1n

The ¢ of equation (16) is obtained from the
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traction forces on -+, which are calculated by

solving equations (1)~(5) in each subdomains with

following constraint:

u® = @=,8" o Vg (18)

Step 1: Steepest descent

‘u(i)'“rl — 'u(i)" _pnw(i)" (19)
where
M n n
Z g(i) g(i)
= (20)
Ew(i)"Aw(i)“

Step 2: Calculation of the new descent direc-tion

g(i)n+1 =g(i)n __pnAw(i)" (21)
S :g(z')"“ — (22)
where
N;
Zg(i)"“g(i)"“
e — (23)
;g(i)"g(i)"

The Au" of equation (20) and (21) is obtained
from the traction forces on ~, which are calculated

by solving the following equations:

o= 0 in Q) (24)
oW =0 on I (25)
u¥ =0 on 1Y (26)
uf =" on 7, 27

Step 3: Judgment of convergence

If uw has not converged yet, return to step 1 by
setting n to be n+1. Here the convergence criterion

is defined as:

@)
_nﬂgw < Err (28)

ma,x‘ g(l)
in which the maximum component of force imbalance
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No

Fig. 3 Flow chart of DDM

along the interface boundary, i.e. residual value, is
monitored.

The flow chart of the present DDM algorithm is
illustrated in Fig. 3. It should be noted here that the
FE analysis of each subdomain can be performed
without any data communication among subdomains.
In other words, the FE calculations of subdomains can
be performed independently, i.e. in parallel, once the
amounts of displacements on the boundaries between
subdomains are known. Since the workload for each FE
calculation is much larger than those of other tasks
including data transfer and modification of boundary
values, the so-called overhead due to communication
is estimated to be very small. In addition, owing to the
decomposition of a large scale FE system into a number
of smaller sub-systems, only small computation
storage is needed for each FE calculation. Also the
calculation time depends much on the number of CG
iteration. Therefore, preconditioning for CG is efficient

to speed up convergence(Shioya et al., 2003).
3. Mesh Generation for DDM

In DDM system, another mesh generator which
decomposes mesh into subdomains, is needed in
addition to the normal mesh generator for the FEM
system. Thus, to support the DDM analysis system
which require such special mesh, an automatic
mesh generation and domain decomposition system
combined with the automatic mesh generation
system for FEM system(Lee, 2004), is developed



3.1 Mesh Generation for FEM

Performances of automatic mesh generation methods
based on node generation algorithms depend on how to
control node spacing functions or node density
distributions and how to generate nodes. The basic
concept of the present mesh generation algorithm is
originated from the imitation of mesh generation
processes by human experts on FE analyses.

The present system stores several local node
patterns such as the pattern suitable to well capture
stress concentration, the pattern to subdivide a finite
domain uniformly, and the pattern to subdivide a
whole domain uniformly. A user selects some of those
local node patterns, and designates where to locate
them. Then a global distribution of the node density
over the whole analysis domain is automatically
calculated through their superposition using fuzzy
knowledge processing(Zadeh, 1983: Lee, 1995 Lee,
2004).

Node generation is one of time consuming processes
in automatic mesh generation. Here, the bucketing
method(Asano, 1985, Lee, 1995) is adopted to
generate nodes which satisfy the distribution of node
density over the whole analysis domain. The base node
pattern and several special ones are placed in the
domain, and all the node patterns are smoothly
connected.

The Delaunay triangulation method(Watson, 1991:
Taniguchi et al., 1991) is utilized to generate
tetrahedral elements from numerous nodes given in a

geometry.
3.2 Domain Decomposer for DDM

In DDM, a whole domain to be analyzed is
fictitiously divided into a number of subdomains
without overlapping and each subdomain is subdivided
into continuous elements without overlapping to be
analyzed by FEM. To generate such a mesh, it is
generate elements in a whole domain first and then
divide the whole domain into subdomains considering

the boundary of elements as shown in Fig. 4.
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3.3 Decomposition Algorithm

The automation of the process of DDM is the key
in the present domain subdivision system. The flow
of this process is as follows as shown in Fig. 5.

(1) A brick which involves the whole domain is

set.

(2) The domain is divided into two subdomains
against the longest side of the brick, if the
domain has the DOF more than the max-imum
value of DOF chosen.

(8) If the divided two subdomains also have the DOF
more than the maximum value, the procedures
(2) and (8) are repeated recursively.

(4) If one of the two divided subdomains has the
DOF less than the half of the chosen max-imum
value of DOF, the procedure of (2) is
re-executed with the slightly shifted cutting
plane.

(5) If both of the two subdomains have the DOF less
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Fig. 4 Subdomain element divide approach
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Fig. 5 Flow of domain subdivision
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than the maximum and more than the half, the

subdivision of the part is complete.

With this binary-tree-like algorithm, the whole
domain can be divided into subdomains which have
nearly and equal DOF, in case that node density of
nodes changes widely. - -

Each FE analysis of subdomain is performed

concurrently in the present DDM system.
4. Examples and Discussions
4.1 Quality of DDM Mesh

In order to evaluate the mesh generated by the
present system, part of a pressure vessel with a
nozzle model is defined and divided into subdomains
and parts.

The geometry of this model is defined using solid

modeler and node and elements are generated as

YUY
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Fig. 6 Mesh of nozzle model
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Regular mesh for
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Fig. 7 Distribution of values of solid angle in the FEM
mesh
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shown in Fig. 6, which consists of 8,426 nodes and
38,853 tetrahedral elements. Around the lower part
of the joint of the nozzle where stress concentration
is supposed to occur, the node density controlled
well.

To check the quality of this mesh, all solid angle
of each tetrahedral element are measured and its
distribution is plotted in Fig. 7. For comparison,
the distribution of a regular mesh of the same size
for a simple model is also plotted. Since the solid
angle of the regular tetrahedron is equivalent to
0.51, it is demonstrated that this mesh generator
system can control the node density with a good
quality of mesh.

Next, the present decomposition system is applied
to this mesh, that is, it is divided into subdomains.

-4 oCor iy 2R e

Fig. 9 Final divided model



On the first step of decomposition, this model is
divided into two subdomains. And in following steps,
this model is divided into three subdomains as shown
in Fig. 8. Iterating such dividing procedure, finally 480

subdomains are obtained as shown in Fig. 9.
4.2 Comparison with Sequential FEM

In order to evaluate the results performed by present
parallel FEM system, its physical values, displacement
and stress calculated by the present system, which is
abbreviated as DDM’, were compared with those by the
uusual sequential FEM system, abbreviated as FEM'.

DDM' and FEM are applied to the FE analysis of
a cubic structure subject to uniform tension. The
structure was modeled with 10,368 4-node tetrahedral
elements, and the total DOF was 6,591. In the case of
analysis of 'DDM, the whole structure was divided into
2’7 subdomains and each subdomain consists of 384
elements as shown in Fig. 10.

Table 1 shows the maximum and mean value of the
errors of displacement and stress respectively given by
‘DDM relative to FEM. Here, the displacement and

stress, denoted ¢ as and o, respectively, are defined

as follows:
3= /& 8+ (29)
o= \/—;—[(Jy—az)2+(az—oz)2+(az—ay)2] (30)

+ 32 2+ )

where §,,6,,0, are the displacement values of axis x,

Y, z, 0,0,0, are the stresses of axis x, y, z and

T

zy’ T,

o T are the shear stresses.

Figs. 11 and 12 show the variations of the residual
value and the error values plotted with respect to the
iteration number of the CG algorithm, respectively.
Now, the number of CG iteration of DDM is defined
when the residual value defined in equation (28)
decreases by the order of 107 of the first step. It is
shown here that the error values decrease rapidly with

the number of iterations.

Fig. 10 Cubic model with decomposition

Table 1 Error of DDM for FEM

Displacement Stress
Max. Error 1.03 % 1.51 %
Mean Error 0.30 % 0.42%
10°
10
107
]
5
E 10k
10+
10'5‘ T Ll ¥ T
0 20 40 60 80 100

Number of Iterations

Fig. 11 Residual vs number of iterations

-©-Displacement(Max)
-8~ Stress(Max)
-@—Displacement(Mean)

Error{%)

5
Number of lterations(tog scale)

Fig. 12 Error vs number of iterations

To check the convergence of physical value such

as displacement, the cubic structure identical to the
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above was analyzed again. Now the cubic structure
was modeled with 74,088 isoparametric 8-noded
elements and the whole domain was divided into
216 subdomains, each consisting of 343 elements.
The total DOF of this model was 238,521 and this
structure was subjected to uniform tension.

Fig. 13 shows the variations of the residual value
against CG iterations and Fig. 14 shows the variations
of the displacement of some positions shown in Fig. 15

100 -
|
10 '+
g 10 ‘2—5
g ]
= ]
10 -3
]O 4 ¥ T
0 10 20 30 40 50

Number of Iterations

Fig. 13 Residual vs number of iterations
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Fig. 14 Displacement vs number of iterations
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Fig. 15 Monitored positions for displacement
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against CG iterations. Comparing Fig. 13 and Fig. 14,
it is estimated that about 40 CG iterations may be
sufficient to attain converged solutions of displacements

in a practical sense.
4.3 Division Number

As described in section 3.2 and 3.3, with this
system, we can divide the mode! into any number
of subdomains. Then how to decide the division
number is important for performance.

For simplicity, a cubic model shown in Fig. 10 is
used here to estimate the computational time. Each
axis of the model is now divided by N with
isoparametric 8-noeded elements, therefore, the domain
of the model is divided into N° elements and the total
number of nodes is equivalent to (N+1)*. Each axis is
then divided into subdomains by d, and therefore, the
total number of subdomains is equivalent to d° and
each subdomain consists of (N/d)® elements and
(N/d+1)® nodes, DOF of which, Daubtonsin. 18
(N/d+1)%x3. The total number of interface DOF,
Dintertace, 00 the other hand amounts to approximately
(NPxdx3).

Now the computational time of the FEM analysis
of each subdomain, Tamain and the total number of

CG iterations Nieration can be evaluated as follows:

Timan= oD, )= (5 +1)x3) (31)

domain

Nteration: fz (Dinterfcwe) = .fz (NZX d X 3) (82)

i

where f, and f;, are function of DOF of each

subdomain and DOF of interface, respectively.
Using f, and f;, ignoring communication, total

computational time 7,,, can be described as follows:

Elr;tota,lz Tdoma’in X d3>< Mterati(m (33)
= fc(Ddomam)XdSsz (Dinierfaoe)

Unfortunately, those functions are unknown but
it can be only estimated in a rough fashion. For f,,

with a direct solver, the main part of FEM analysis



is the factorization of matrix part and forward and
backward elimination part. The order of operation
times of these calculation are O(N’) and O(N?),
respectively, where N is DOF of problem. Here, for
simplicity, f, is defined as a quadratic function of
Dsubaomain.

For f,, from the CG algorithm for matrix
solution, it is known that the number of iterations
is linear to the square root of DOF and its
coefficient depends on the condition number of the
matrix.

Using these assumptions, f, and f, are described

as follows:
fc(w) = ax’+ br+c (34)
fi(z)=dz'*+ e (35)

where a, b, ¢, d and e are all coefficients.

To find out these coefficients, the total computational
time can be estimated. To determine them, some
numerical experimentations are performed here. For
some sets of N and d, analyses of the DDM are
performed and f, and f, are evaluated.

The results of these numerical experimentations
which are performed by only on workstation, Sun
SS(50MHz), are In this
assumption, since communication time is avoided,
one processor is used for all execution of the DDM

without communication.

shown in Table 2.

First, using the results of f, with Dibdomain, f, is
estimated as follows:

fz)=az’+bz+c

a=3.72x 1076
b=1.50x 10"*
c=1.92x 1073

Table 2 Computational time and CG iterations

N d | Disviomain l)interface i . T o

8 2 375 583 | 0.58 20 92.8
8 4 81 1,359 | 0.04 25 66.8
12 3 375 2,406 | 0.58 26 407.2
12 4 102 3,315 | 0.17 29 329.7
24 4 1,092 14,367 | 4.10 43 11386.4
24 6 375 21,975 | 0.58 47 5888.2
24 8 192 28,175 | 0.17 53 4613.1
24 12 81 36,927 | 0.04 58 4009.0

o)A - s B - o 2 - o]

HN

Next, f, was estimated for each N using two of
d, i.e. in case of (N=24), the results of (d=4) and
(d=6) are used, as follows:

fi(ac)z dr'?+ e

d =85 e=79(N=28)
d=112 e = 6.6 (¥ =12)
d =90 e =252 (N =24)

Using these results, the total computation time
T, Wwere estimated and plotted against division
number d in Fig. 16 and Fig. 17 As shown in these
figures, there exists one division number d which
minimize the total computation time.

For the case of (V=24), the results with (d=8)
and (d=12) were not used to estimate 7j,, but
they match well with the estimated results. This
means, to perform a few numerical experimentations
for the model, it can be estimated the best division

number d for the model.
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Division Number

Fig. 16 Computational time vs division number(N=8)
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Fig. 17 Computational time vs division number
(N=24)
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5. Conclusions

The parallel finite element system based on the
DDM and the automatic mesh generator for DDM
system, were successfully developed in the present
study.

The key features of the present algorithm are an
easy control of complex 3D node density distribution
and fast node and element generation owing to some
computational geometry techniques. The effective of
the present system is demonstrated through several
mesh generations for 3D complex structures such as
pressure vessel with nozzles model.

In the next version, the present system will be
applied to 3D elasto-plastic structural problem of
over one million DOF.
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