Development of Battery-free SAW Integrated Microsensor for Real Time Simultaneous Measurement of Humidity and $CO_2$ component

습도와 $CO_2$ 농도의 실시간 동시감지를 위한 무전원 SAW 기반 집적 센서 개발

  • Lim, Chun-Bae (Department of Electronics Engineering, Ajou University) ;
  • Lee, Kee-Keun (Department of Electronics Engineering, Ajou University) ;
  • Wang, Wen (Department of Electronics Engineering, Ajou University) ;
  • Yang, Sang-Sik (Department of Electronics Engineering, Ajou University)
  • 임천배 (아주대학교 전자공학과) ;
  • 이기근 (아주대학교 전자공학과) ;
  • 왕웬 (아주대학교 전자공학과) ;
  • 양상식 (아주대학교 전자공학과)
  • Published : 2009.03.30

Abstract

A 440MHz wireless and passive surface acoustic wave (SAW) based chemical sensor was developed on a $41^{\circ}YX\;LiNbO_3$ piezoelectric substrate for simultaneous measurement of $CO_2$ gas and relative humidity (RH) using a reflective delay line pattern as the sensor element. The reflective delay line is composed of an interdigital transducer (IDT) and several shorted grating reflectors. A Teflon AF 2400 and a hydrophilic $SiO_2$ layer were used as $CO_2$ and water vapor sensitive films. The coupling of mode (COM) modeling was conducted to determine optimal device parameters prior to fabrication. According to simulation results, the device was fabricated and then wirelessly measured using the network analyzer. The measured reflective coefficient $S_{11}$ in the time domain showed high signal/noise (S/N) ratio, small signal attenuation, and few spurious peaks. In the $CO_2$ and humidity testing, high sensitivity ($2^{\circ}/ppm$ for $CO_2$ detection and $7.45^{\circ}/%$RH for humidity sensing), good linearity and repeatability were observed in the $CO_2$ concentration ranges of $75{\sim}375ppm$ and humidity levels of $20{\sim}80%$RH. Temperature and humidity compensations were also investigated during the sensitivity evaluation process.

상대습도와 $CO_2$ 기체의 실시간 동시 감지가 가능한 표면탄성파(SAW: Surface Acoustic Wave) 기반의 무선, 무전원 센서가 개발되었다. 본 소자는 $41^{\circ}YX\;LiNbO_3$ 기판 위에 만들어졌으며, 반사 지연선의 구조로 이루어져 있다. 본 논문의 반사 지연선은 양방향 감지가 가능한 Interdigital transducer(IDT)와 10개의 리플렉터(reflector)로 이루어져 있다. 감지 필름은 Teflon AF 2400과 친수성의 $SiO_2$층이 이용되었으며, 이는 각각 $CO_2$와 상대 습도의 감지를 담당한다. 소자의 제작에 앞서 최적의 소자 설계 조건들을 도출하기 위해 Couple of mode(COM) 모델링이 실시되었다. 시뮬레이션 결과를 반영하여 소자의 제작이 진행되었으며, 네트워크 분석기를 이용하여 무선 측정이 실시 되었다. 시간 영역에서 측정된 반사계수 $S_{11}$은 높은 신호 대 잡음 비, 작은 신호 감쇠, 적은 허위 피크를 보였다. 제작된 소자는 각각 $75{\sim}375ppm$$CO_2$ 범위와 $20{\sim}80%$의 상대 습도 범위에서 측정되었으며, 각각 $2^{\circ}/ppm$$CO_2$ 민감도, $7.45^{\circ}/%$의 상대습도에 대한 민감도를 보였고, 좋은 선형성과 반복성을 보였다. 또한 민감도 측정 과정에서 온도와 습도의 보상 과정을 거쳐 더욱 정확한 민감도를 갖도록 하였다.

Keywords

References

  1. H. Wohltjen and R. Ressy, "Surface acoustic wave probe for chemical analysis, Parts I-III", Anal chem., 51, 1458-1475 (1979). https://doi.org/10.1021/ac50045a024
  2. D. Ballantine, R. White, S. Martin, A. Ricco, E. Zellers, Z. Frye and H. Wohltgen, "Acoustic wave sensors: Theory, Design, & Physico-Chemical Applications (Applications of Modern Acoustics)", Moises Levy and Richard Stern, Academic Press, San Diego (1996).
  3. A. Springer, R. Weigel, A. Pohl, and F. Seifert, "Wireless identification and sensing using surface acoustic wave devices", Mechatronics, 9, 745-756 (1999). https://doi.org/10.1016/S0957-4158(99)00030-6
  4. W. Wang, K. Lee, T. Kim, I. Park and S. Yang, "A novel wireless, passive $CO_2$ sensor incorporating a surface acoustic wave reflective delay line", Smart Mater. Struct., 16, 1382- 1389 (2007). https://doi.org/10.1088/0964-1726/16/4/053
  5. K. Hashimoto, "Surface Acoustic Wave Devices in Telecommunications- Modeling and Simulation", Springer; 1 edition, New York (2000).
  6. P. Kebabian and A. Freedman, "Fluoropolymer-based capacitive carbon dioxide sensor", Meas. Sci. Technol., 17, 703-710 (2006). https://doi.org/10.1088/0957-0233/17/4/015
  7. R. Hollinger, A. Tellakula and C. Li, "Wireless surface acoustic wave-based humidity sensor", Proceedings of SPIE, 3876, 54 (1999).
  8. M. Jungwirth, H. Scherr, and R. Weigel, "Micromechanical precision pressure sensor incorporating SAW delay lines", Acta Mechanica, 158, 227-252 (2002). https://doi.org/10.1007/BF01176911
  9. C. Caliendo, E. Verona and V. Anisimkin, "Surface acoustic wave humidity sensors: a comparison between different types of sensitive membrane", Smart Mater. Struct., 6, 707-715 (1997). https://doi.org/10.1088/0964-1726/6/6/007
  10. P. Wright, "Analysis and design of low loss SAW devices with internal reflections using coupling-of-mode theory", IEEE Ultrason. Symp., 141-152 (1989).
  11. B. Abbott and C. Hartmann, "A coupling-of-modes analysis of chirped transducers containing reflective electrode geometries", IEEE Ultrason. Symp., 129-134