DOI QR코드

DOI QR Code

과산화수소에 의한 산화스트레스가 영아형 바텐병에서 neurogranin의 인산화에 미치는 영향

Effect of Neurogranin Phosphorylation on Oxidative Stress by Hydrogen Peroxide in Early Onset of Batten Disease

  • 윤동호 (호서대학교 생명공학과) ;
  • 김한복 (호서대학교 생명공학과) ;
  • 박주훈 (호서대학교 한방화장품과학과) ;
  • 김성조 (호서대학교 생명공학과)
  • 발행 : 2009.04.30

초록

영아형 바텐병은 PPT1 결핍 및 기능장애로 인해 발병하며, 12,500명 당 1명의 발병률을 가진 신경 퇴행 질환이다. 전 세계적으로 수많은 연구가 진행 중 이지만, 아직 명확하게 밝혀진 발병원인 및 치료방법에 대해서는 알려지고 있지 않다. 본 연구에서는 뇌에서 풍부하게 발현되는 neurogranin의 발현수준이 WT과 EBD KO 쥐에서 어떤 변화를 보이는지 확인하기 위해 mRNA, 단백질, 배양된 neurospheres를 이용하여 실험을 수행하였다. real-time PCR을 통한 neurogranin의 발현수준 비교 결과 WT에서는 노화와 무관하게neurogranin mRNA 수준에 차이가 없었으나, EBD KO 쥐에서는 노화가 진행됨에 따라 neurogranin mRNA 발현수준이 감소하였으며, 뇌에서 추출된 단백질을 이용한 western blot 분석에서도 real-time PCR과 동일한 결과를 확인할 수 있었다. 또한 WT, EBD KO 쥐의 태아로 부터 neural stem cell 인 neurospheres를 배양하여 western blot 분석을 수행한 결과 PPT1 결핍에 의해 neurogranin의 정상적인 인산화에 문제가 발생함을 확인하였다. 이러한 결과들을 바탕으로 neurospheres에 산화스트레스 유발물질인 $H_2O_2$를 처리하였고, 24시간 경과 후 항산화제인 NAC을 처리하자 $H_2O_2$를 처리한 시료에서는 mock control인 인산화된 neurogranin에 비해 그 수준이 증가하였으며, $H_2O_2$ 처리 후 NAC을 투여한 시료의 인산화 수준은 mock control 보다는 높았지만 $H_2O_2$만을 처리한 시료 수준보다 neurogranin의 인산화 정도가 감소하는 결과를 확인하였다. 이러한 결과들을 통해 PPT1 결핍으로 인해 신경세포 내에 과다하게 인산화된 neurogranin이 존재하며, neurogranin 인산화 정도는 세포가 지닌 산화스트레스 정도에 의해 변화함을 알 수 있었다. 또한 항산화제를 사용하여 세포의 산화스트레스 수준을 감소시킬 경우 neurogranin의 기능을 정상적으로 회복시킬 수 있는 가능성을 확인하였다.

Early onset of Batten disease (EBD), one of the most lethal neurodegenerative storage disorders of childhood, is caused by inactivating mutations in the Ceroid Lipofuscinosis, Neuronal (CLN1) gene. Neurogranin, a calmodulin-binding protein, is expressed in the brain and participates in the protein kinase C (PKC) signaling pathway. While oxidative stress is the suggested cause of neurodegeneration in EBD, its molecular mechanism(s) remains obscure. In this research, we examined the levels of neurogranin in the brain mRNA of wild-type (WT) mice and EBD knockout (KO) mice, as well as the proteins. We also performed neuronal cultures to measure the expression levels of neurgranin and phosphorylated-neurogranin with or without oxidative stress inducers and anti-oxidants. Results showed that neurogranin in both EBD KO mice brain mRNA and protein extracts decreased in an age dependent manner. However, high amounts of phosphorylated-neurogranin were detected in the 6-month brain. This pattern was also confirmed by cultured neurospheres samples. Moreover, neurospheres treated with $H_2O_2$, an oxidative stress inducer, showed increased phosphorylated-neurogranin patterns. Interestingly, this pattern returned to normal status when treated with N-acetyl-L-cystein, an anti-oxidant, after $H_2O_2$ treatment was performed. Our results suggest that the phosphorylation of neurogranin is affected by oxidative stress status in EBD, and appropriate anti-oxidant treatment will relieve hyper-phosphorylation of neurogranin.

키워드

참고문헌

  1. Ahtiainen, L., J. Kolikova, A. L. Mutka, K. Luiro, M. Gentile, E. Ikonen, L. Khiroug, A. Jalanko, and O. Kopra. 2007. Palmitoyl protein thioesterase 1 (Ppt1)-deficient mouse neurons show alterations in cholesterol metabolism and calcium homeostasis prior to synaptic dysfunction. Neurobiol. Dis. 28, 52-64 https://doi.org/10.1016/j.nbd.2007.06.012
  2. Dominguez-Gonzalez, I., S. N. Vazquez-Cuesta, A. Algaba, and F. J. Diez-Guerra. 2007. Neurogranin binds to phosphatidic acid and associates to cellular membranes. Biochem. J. 404, 31-43 https://doi.org/10.1042/BJ20061483
  3. Gupta, P., A. A. Soyombo, A. Atashband, K. E. Wisniewski, J. M. Shelton, J. A. Richardson, R. E. Hammer, and S. L. Hofmann. 2001. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc. Natl. Acad. Sci. 98, 13566-13571 https://doi.org/10.1073/pnas.251485198
  4. Hobert, J. A. and G. Dawson. 2006. Neuronal ceroid lipofuscinoses therapeutic strategies: past, present and future. Biochim. Biophys. Acta. 1762, 945-953 https://doi.org/10.1016/j.bbadis.2006.08.004
  5. Isosomppi, J., J. Vesa, A. Jalanko, and L. Peltonen. 2002. Lysosomal localization of the neuronal ceroid lipofuscinosis CLN5 protein. Hum. Mol. Genet. 11, 885-891 https://doi.org/10.1093/hmg/11.8.885
  6. Jalanko, A., J. Vesa, T. Manninen, C. von Schantz, H. Minye, A. L. Fabritius, T. Salonen, J. Rapola, M. Gentile, O. Kopra, and L. Peltonen. 2005. Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammationassociated loss of interneurons. Neurobiol. Dis. 18, 226-241 https://doi.org/10.1016/j.nbd.2004.08.013
  7. Kalviainen, R., K. Eriksson, M. Losekoot, I. Sorri, I. Harvima, P. Santavuori, I. Jarvela, T. Autti, R. Vanninen, T. Salmenpera, and O. P. van Diggelen. 2007. Juvenile-onset neuronal ceroid lipofuscinosis with infantile CLN1 mutation and palmitoyl-protein thioesterase deficiency. Eur. J. Neurol. 14, 369-372 https://doi.org/10.1111/j.1468-1331.2007.01668.x
  8. Kim, S. J., Z. Zhang, E. Hitomi, Y. C. Lee, and A. B. Mukherjee. 2006. Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum. Mol. Genet. 15, 1826-1834 https://doi.org/10.1093/hmg/ddl105
  9. Kim, S. J., Z. Zhang, Y. C. Lee, and A. B. Mukherjee. 2006. Palmitoyl-protein thioesterase-1 deficiency leads to the activation of caspase-9 and contributes to rapid neurodegeneration in INCL. Hum. Mol. Genet. 15, 1580-1586 https://doi.org/10.1093/hmg/ddl078
  10. Filippo, M. Santorelli., B. Enrico, P. Vittoria, D. C. Matteo, C. Stefano, G. Paolo, and Z. Massimo. 1998. A Novel Insertion Mutation (A169i) in the CLN1 Gene Is Associated with Infantile Neuronal Ceroid Lipofuscinosis in an Italian Patient. Biochem. Biophys. Res. Commun. 245, 519-522 https://doi.org/10.1006/bbrc.1998.8484
  11. Kyttala, A., U. Lahtinen, T. Braulke, and S. L. Hofmann. 2006. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. Biochim. Biophys. Acta. 1762, 920-933 https://doi.org/10.1016/j.bbadis.2006.05.007
  12. Lehtovirta, M., A. Kyttala, E. L. Eskelinen, M. Hess, O. Heinonen, and A. Jalanko. 2001. Palmitoyl protein thioesterase (PPT) localizes into synaptosomes and synaptic vesicles in neurons: implications for infantile neuronal ceroid lipofuscinosis (INCL). Hum. Mol. Genet. 10, 69-75 https://doi.org/10.1093/hmg/10.1.69
  13. Li, J., C. Yang, S. Han, P. Zu, J. Wu, Q. Xu, and L. Fang. 2006. Increased phosphorylation of neurogranin in the brain of hypoxic preconditioned mice. Neurosci. Lett. 391, 150-153 https://doi.org/10.1016/j.neulet.2005.08.046
  14. Martinez de Arrieta, C., B. Morte, A. Coloma, and J. Bernal. 1999. The human RC3 gene homolog, NRGN contains a thyroid hormone-responsive element located in the first intron. Endocrinology 140, 335-343 https://doi.org/10.1210/en.140.1.335
  15. Qiao, X., J. Y. Lu, and S. L. Hofmann. 2007. Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response. BMC. Neurosci. 8, 95
  16. Salonen, T., O. Heinonen-Kopra, J. Vesa, and A. Jalanko. 2001. Neuronal trafficking of palmitoyl protein thioesterase provides an excellent model to study the effects of different mutations which cause infantile neuronal ceroid lipofuscinocis. Mol. Cell Neurosci. 18, 131-140 https://doi.org/10.1006/mcne.2001.1010
  17. Salonen, T., I. Jarvela, L. Peltonen, and A. Jalanko. 2000. Detection of eight novel palmitoyl protein thioesterase (PPT) mutations underlying infantile neuronal ceroid lipofuscinosis (INCL;CLN1). Hum. Mutat. 15, 273-279 https://doi.org/10.1002/(SICI)1098-1004(200003)15:3<273::AID-HUMU8>3.0.CO;2-L
  18. Watson, J. B., H. Khorasani, A. Persson, K. P. Huang, F. L. Huang, and T. J. O'Dell. 2002. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of $Ca^{2+}$/calmodulin-dependent protein kinase II. J. Neurosci. Res. 70, 298-308 https://doi.org/10.1002/jnr.10427
  19. Zhang, J. P., W. Y. Liang, Z. H. Luo, Z. C. Yang, H. C. Chan, and Y. S. Huang. 2007. Involvement of p38 MAP kinase in burn-induced degradation of membrane phospholipids and upregulation of cPLA2 in cardiac myocytes. Shock 28, 86-93
  20. Zhang, Z., J. D. Butler, S. W. Levin, K. E. Wisniewski, S. S. Brooks, and A. B. Mukherjee. 2001. Lysosomal ceroid depletion by drugs: therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat. Med. 7, 478-484 https://doi.org/10.1038/86554
  21. Zhang, Z., Y. C. Lee, S. J. Kim, M. S. Choi, P. C. Tsai, A. Saha, H. Wei, Y. Xu, Y. J. Xiao, P. Zhang, A. Heffer, and A. B. Mukherjee. 2007. Production of lysophosphatidylcholine by cPLA2 in the brain of mice lacking PPT1 is a signal for phagocyte infiltration. Hum. Mol. Genet. 16, 837-847 https://doi.org/10.1093/hmg/ddm029
  22. Zhang, Z., Y. C. Lee, S. J. Kim, M. S. Choi, P. C. Tsai, Y. Xu, Y. J. Xiao, P. Zhang, A. Heffer, and A. B. Mukherjee. 2006. Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum. Mol. Genet. 15, 337-346 https://doi.org/10.1093/hmg/ddi451