Effect of Puerariae Radix on Hind Limb Muscle Atrophy of Sciatic Nerve Transectioned Rats

갈근(葛根)이 좌골신경 손상 흰쥐의 후지 근육위축에 미치는 영향

  • Jang, Sung-Wook (Department of Anatomy-Pointlogy, College of Oriental Medicine, Kyungwon University) ;
  • Kim, Youn-Sub (Department of Anatomy-Pointlogy, College of Oriental Medicine, Kyungwon University)
  • 장승욱 (경원대학교 한의과대학 해부경혈학교실) ;
  • 김연섭 (경원대학교 한의과대학 해부경혈학교실)
  • Published : 2009.04.25

Abstract

This study evaluated the effects of Puerariae Radix on the skeletal muscle atrophy, Muscle atrophy was induced by the sciatic nerve transection in Sprague-Dawley rats, then aqueous-extract of Puerariae Radix was administered for 12 days, Muscle wet weight was measured in soleus, plantaris, and medial gastrocnemius. Muscle fiber type was classified by MHCf immunohistochemistry. Muscle fiber type proportion and cross section area of muscle fiber also was observed in medial gastrocnemius. Bax and Bcl-2 expressions in medial gastrocnemius of the damaged hind limb were evaluated with immunohistochemistry. The results are as follows; Puerariae Radix attenuated muscle atrophy in soleus of the sciatic nerve transectioned rats, but there was statistic significance. Puerariae Radix attenuated significantly atrophy in plantaris at 12 days and in medial gastrocnemius at 8 days and 12 days. Puerariae Radix improved histology of the atrophic changes and increased significantly cross section areas of type-I and type-II muscle fibers in medial gastrocnemius of the sciatic nerve transectioned rats. Puerariae Radix did not affect to muscle fiber type proportion in medial gastrocnemius of the sciatic nerve transectioned rats. Puerariae Radix attenuated significantly Bax positive nuclei but did not affect to Bcl-2 positive muscle fibers in medial gastrocnemius of the sciatic nerve transectioned rats.According to above results, Puerariae Radix may have an anti-atrophy effect on the denervated skeletal muscle through anti-apoptotic effects on muscle fibers.

Keywords

References

  1. 이상인. 본초학. 서울, 의학사, pp 65-66, 1975
  2. 이상인, 안덕균, 신민교. 한약임상응용. 서울, 성보사, pp 370-372, 1982
  3. 김호철. 한약약리학. 서울, 집문당, pp 92-94, 2001
  4. Kang, K.A., Chae, S., Koh, Y.S., Kim, J.S., Lee, J.H., You, H.J., Hyun, J.W. Protective effect of puerariae radix on oxidative stress induced by hydrogen peroxide and streptozotocin. Biol Pharm Bull. 28(7):1154-1160, 2005 https://doi.org/10.1248/bpb.28.1154
  5. Guang, H.M., Zhang, X.M., Li, Y.Q., Wei, X.B., Wang, Z.Y., Liu, H.Q. Protective effects of hydroxyethylpuerarin on cultured bovine cerebral microvascular endothelial cells damaged by hydrogen peroxide. Yao Xue Xue Bao. 40(3):220-224, 2005
  6. Jiang, R.W., Lau, K.M., Lam, H.M., Yam, W.S., Leung, L.K., Choi, K.L., Waye, M.M., Mak, T.C., Woo, K.S., Fung, K.P. A comparative study on aqueous root extracts of Pueraria thomsonii and Pueraria lobata by antioxidant assay and HPLC fingerprint analysis. J Ethnopharmacol. 96(1-2):133-138, 2005 https://doi.org/10.1016/j.jep.2004.08.029
  7. 김상현, 김연섭. 갈근의 뇌해마 신경세포 손상보호와 항산화 효능에 대한 연구. 동의생리병리학회지 19(2):416-425, 2005
  8. Finol, H.J., Lewis, D.M., Owens, R. The effects of denervation on contractile properties or rat skeletal muscle. J Physiol. 319: 81-92, 1981 https://doi.org/10.1113/jphysiol.1981.sp013893
  9. Goldspin,k D.F. The effects of denervation on protein turnover of rat skeletal muscle. Biochem J. 156: 71-80, 1976 https://doi.org/10.1042/bj1560071
  10. Jakubiec-Puka, A., Kordowska, J., Catani, C., Carraro, U. Myosin heavy chain isoform composition in striated muscle after denervation and self-reinnervation. Eur J Biochem. 193: 623-628, 1990 https://doi.org/10.1111/j.1432-1033.1990.tb19379.x
  11. Lu, D.X., Huang, S.K., Carlson, B.M. Electron microscopic study of long-term denervated rat skeletal muscle. Anat Rec. 248: 355-365, 1997. https://doi.org/10.1002/(SICI)1097-0185(199707)248:3<355::AID-AR8>3.0.CO;2-O
  12. Muller, F.L, Song, W., Jang, Y.C., Liu, Y., Sabia, M., Richardson, A., Van Remmen, H. Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol. 293(3):R1159-1168, 2007 https://doi.org/10.1152/ajpregu.00767.2006
  13. Li, Y.P., Atkins, C.M., Sweatt, J.D., Reid, M.B. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes. Antioxid Redox Signal. 1(1):97-104, 1999. https://doi.org/10.1089/ars.1999.1.1-97
  14. Ferreira, R., Vitorino, R., Neuparth, M.J., Appell, H.J., Amado, F., Duarte, J.A. Cellular patterns of the atrophic response in murine soleus and gastrocnemius muscles submitted to simulated weightlessness. Eur J Appl Physiol. 101(3):331-340 https://doi.org/10.1007/s00421-007-0502-z
  15. Dupont-Versteegden, E.E. Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol. 12(46):7463-7466, 2006 https://doi.org/10.3748/wjg.v12.i46.7463
  16. Liu, M., Zhang, D., Shao, C., Liu, J., Ding, F., Gu, X. Expression pattern of myostatin in gastrocnemius muscle of rats after sciatic nerve crush injury. Muscle Nerve. 35(5):649-656, 2007 https://doi.org/10.1002/mus.20749
  17. Arguello, A., Lopez-Fernandez, J.L., Rivero, J.L. Limb myosin heavy chain isoproteins and muscle fiber types in the adult goat (Capra hircus). Anat Rec. 264(3):284-293, 2001 https://doi.org/10.1002/ar.1165
  18. Keung, W.M., Vallee, B.L. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc Natl Acad Sci USA. 90(4):1247-1251, 1993 https://doi.org/10.1073/pnas.90.4.1247
  19. Keung, W.M. Biochemical studies of a new class of alcohol dehydrogenase inhibitors from Radix puerariae. Alcohol Clin Exp Res. 17(6):1254-1260, 1993 https://doi.org/10.1111/j.1530-0277.1993.tb05238.x
  20. Keung, W.M., Klyosov, A.A., Vallee, B.L. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters. Proc Natl Acad Sci USA. 94(5):1675-1679, 1997 https://doi.org/10.1073/pnas.94.5.1675
  21. Rong, H., Stevens, J.F., Deinzer, M.L., Cooman, L.D., Keukeleire, D.D. Identification of isoflavones in the roots of Pueraria lobata. Planta Med. 64(7):620-627, 1998 https://doi.org/10.1055/s-2006-957534
  22. Arao, T., Kinjo, J., Nohara, T., Isobe, R. Oleanene-type triterpene glycosides from puerariae radix. IV. Six new saponins from Pueraria lobata. Chem Pharm Bull. 45(2):362-366, 1997 https://doi.org/10.1248/cpb.45.362
  23. Arao, T., Udayama, M., Kinjo, J., Nohara, T. Preventive effects of saponins from the Pueraria lobata root on in vitro immunological liver injury of rat primary hepatocyte cultures. Planta Med. 64(5):413-416, 1998 https://doi.org/10.1055/s-2006-957471
  24. Guerra, M.C., Speroni, E., Broccoli, M., Cangini, M., Pasini, P., Minghett, A., Crespi-Perellino, N., Mirasoli, M., Cantelli-Forti, G., Paolini, M. Comparison between chinese medical herb Pueraria lobata crude extract and its main isoflavone puerarin antioxidant properties and effects on rat liver CYP-catalysed drug metabolism. Life Sci. 67(24):2997-3006, 2000 https://doi.org/10.1016/S0024-3205(00)00885-7
  25. Jang, M.H., Shin, M.C., Lee, T.H., Bahn, G.H., Shin, H.S., Lim, S., Kim, E.H., Kim, C.J. Effect of Puerariae radix on c-Fos expression in hippocampus of alcohol-intoxicated juvenile rats. Biol Pharm Bull. 26(1):37-40, 2003 https://doi.org/10.1248/bpb.26.37
  26. Jang, M.H., Shin, M.C., Chung, J.H., Shin, H.D., Kim, Y., Kim, E.H., Kim, C.J. Effects of Puerariae radix on cell proliferation and nitric oxide synthase expression in dentate gyrus of alcohol-intoxicated Sprague-Dawley rats. Jpn J Pharmacol. 88(3):355-358, 2002 https://doi.org/10.1254/jjp.88.355
  27. 김연섭. 갈근이 뇌허혈 손상 흰쥐의 해마 구역별 HSP70 발현에 미치는 영향. 동의생리병리학회지 18(1):167-171, 2004
  28. Kim, O.S., Choi, J.H., Soung, Y.H., Lee, S.H., Lee, J.H., Ha, J.M., Ha, B.J., Heo, M.S., Lee, S.H. Establishment of in vitro test system for the evaluation of the estrogenic activities of natural products. Arch Pharm Res. 27(9):906-911, 2004 https://doi.org/10.1007/BF02975841
  29. Wang, X., Wu, J., Chiba, H., Umegaki, K., Yamada, K., Ishimi, Y. Puerariae radix prevents bone loss in ovariectomized mice. J Bone Miner Metab. 21(5):268-275, 2003 https://doi.org/10.1007/s00774-003-0420-z
  30. Guang, H.M., Zhang, X.M., Li, Y.Q., Wei, X.B., Wang, Z.Y., Liu, H.Q. Protective effects of hydroxyethylpuerarin on cultured bovine cerebral microvascular endothelial cells damaged by hydrogen peroxide. Yao Xue Xue Bao. 40(3):220-224, 2005
  31. Gupta, R.C., Misulis, K.E., Dettbarn, W.D. Activity dependent characteristics of fast and slow muscle: biochemical and histochemical considerations. Neurochem Res, 14(7):647-655, 1989 https://doi.org/10.1007/BF00964874
  32. Gillespie, M.J., Gordon, T., Murphy, P.R. Motor units and histochemistry in rat lateral gastrocnemius and soleus muscles: evidence for dissociation of physiological and histochemical properties after reinnervation. J Neurophysiol, 57(4):921-937, 1987 https://doi.org/10.1152/jn.1987.57.4.921
  33. Dupont-Versteegden, E.E., Houle, J.D., Gurley, C.M. and Peterson, C.A. Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Am J Physiol Cell Physiol, 275: C1124-C1133, 1998 https://doi.org/10.1152/ajpcell.1998.275.4.C1124
  34. Chatzisotiriou, A.S., Kapoukranidou, D., Gougoulias, N.E., Albani, M. Effect of neonatal spinal transection and dorsal rhizotomy on hindlimb muscles. Brain Res Dev Brain Res. 157(2):113-123, 2005 https://doi.org/10.1016/j.devbrainres.2005.02.010
  35. Megighian, A., Germinario, E., Rossini, K., Midrio, M., Danieli-Betto, D. Nerve control of type 2A MHC isoform expression in regenerating slow skeletal muscle. Muscle Nerve. 24(1):47-53, 2001 https://doi.org/10.1002/1097-4598(200101)24:1<47::AID-MUS5>3.0.CO;2-4
  36. Haddad, F., R.E. Herrick, G.R. Adams and K.M. Baldwin. Myosin heavy chain expression in rodent skeletal muscle: effects of exposure to zero gravity. J Appl Physiol. 75: 2471-2477, 1993 https://doi.org/10.1152/jappl.1993.75.6.2471
  37. Jankala, H., V.P. Harjola, N.E. Petersen and M. Harkonen. Myosin heavy chain mRNA transform to faster isoforms in immobilized skeletal muscle: a quantitative PCR study. J Appl Physiol. 82: 977-982, 1997 https://doi.org/10.1152/jappl.1997.82.3.977
  38. Nicholso, D.W. Mechanisms of apoptotic control. Nature. 407: 810-816, 2000 https://doi.org/10.1038/35037747
  39. Chen, J., Graham, S.H., Chan, P.H., Lan, J., Zhou, R.L, Simon, R.P. Bcl-2 is expressed in neurons that survive focal ischemia in the rat. Neuroreport. 6: 394-398, 1995 https://doi.org/10.1097/00001756-199501000-00040
  40. Olive, M., Ferrer, L. Bcl-2 and Bax protein expression in human myopathies. J Neurol Sci. 164: 76-81, 1999 https://doi.org/10.1016/S0022-510X(99)00041-6