Quantitative analysis of periapical lesions on cone beam computed tomograph and periapical radiograph

Cone beam형 전산화단층영상과 치근단방사선영상의 치근단 병소에 대한 정량적인 분석

  • Kim, Jin-Hoa (Department of Oral & Maxillofacial Radiology, Wonkwang University) ;
  • Lee, Wan (Department of Oral & Maxillofacial Radiology, Wonkwang University) ;
  • Kim, Kyung-Soo (School of Dentistry, Wonkwang University) ;
  • Roh, Young-Chea (School of Dentistry, Wonkwang University) ;
  • Kim, De-Sok (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Byung-Do (Department of Oral & Maxillofacial Radiology, Wonkwang University)
  • 김진화 (원광대학교 치과대학 구강악안면방사선학교실) ;
  • 이완 (원광대학교 치과대학 구강악안면방사선학교실) ;
  • 김경수 (원광대학교 치과대학) ;
  • 노영채 (원광대학교 치과대학) ;
  • 김대석 (한국과학기술원) ;
  • 이병도 (원광대학교 치과대학 구강악안면방사선학교실)
  • Published : 2009.03.31

Abstract

Purpose: To detect the progression of experimentally induced periapical lesions on periapical radiograph and cone beam computed tomograph (CBCT) by quantitative analysis. Materials and Methods: After the removal of coronal pulps from premolars of two Beagle dogs, the root canals of premolars were exposed to oral environment during one week and then sealed for 70 days. Digital periapical radiographs and CBCTs were taken at baseline and every 7 days for 77 days after pulp exposure. We examined occurrence and areas of periapical bone resorption. Three comparative groups of CBCT radiographs were prepared by average projection of thin slabs with different bucco-lingual thicknesses (0.1, 3.0, and 8.0 mm) using a 3D visualization software. Radiographic densities were compensated by image normalization. Digital images were processed with mathematical morphology operations. The radiographic density and morphological features of periapical lesions were compared among three groups of CBCT in different time points. Results: In the CBCT group with 0.1 mm thickness, radiographic density (p<0.05) and trabecular bone area (p<0.01) were significantly decreased at the fifth week. However, in the CBCT groups with 3 mm and 8 mm thickness and periapical radiographs, none of densitometric and morphological features showed any significant differences in different time points. Radiographic density of periapical lesion showed increasing tendency at the eleventh week after pulp exposure. Conclusion: Radiographic detection of periapical lesions was possible at the fifth week after pulp contamination by quantitative method and was affected by buccolingual bone thickness.

Keywords

References

  1. Bergenholtz G. Pathogenic mechanisms in pulpal disease. J Endod 1990; 16 : 98-101. https://doi.org/10.1016/S0099-2399(06)81571-2
  2. Yu SM, Stashenko P. Identification of inflammatory cells in developing rat periapical lesions. J Endod 1987; 13 : 535-40. https://doi.org/10.1016/S0099-2399(87)80033-X
  3. Stashenko P, Yu SM, Wang CY. Kinetics of immune cell and bone resorptive responses to endodontic infections. J Endod 1992; 18 : 422-6. https://doi.org/10.1016/S0099-2399(06)80841-1
  4. De Rossi A, De Rossi M, Rocha LB, da Silva LA, Rossi MA. Morphometric analysis of experimentally induced periapical lesions: radiographic vs histopathological findings. Dentomaxillofac Radiol 2007;36 : 211-7. https://doi.org/10.1259/dmfr/93927281
  5. White SC, Gratt BM. Clinical trials of intraoral dental xeroradiography. J Am Dent Assoc 1979; 99 : 810-6. https://doi.org/10.14219/jada.archive.1979.0407
  6. Nicopoulou-Karayianni K, Bragger U, Patrikiou A, Stassinakis A, Lang NP. Image processing for enhanced observer agreement in the evaluation of periapical bone changes. Int Endod J 2002; 35 : 615-22. https://doi.org/10.1046/j.1365-2591.2002.00526.x
  7. Bender IB. Factors influencing the radiographic appearance of bony lesions. J Endod 1982; 8 : 161-70. https://doi.org/10.1016/S0099-2399(82)80212-4
  8. Andreasen FM, Sewerin I, Mandel U, Andreasen JO. Radiographic assessment of simulated root resorption cavities. Endod Dent Traumatol 1987; 3 : 21-7. https://doi.org/10.1111/j.1600-9657.1987.tb00167.x
  9. Delano EO, Tyndall D, Ludlow JB, Trope M, Lost C. Quantitative radiographic follow-up of apical surgery: a radiometric and histologic correlation. J Endod 1998; 24 : 420-6. https://doi.org/10.1016/S0099-2399(98)80025-3
  10. Trouerbach WT, Steen WH, Zwamborn AW, Schouten HJ. A study of the radiographic aluminum equivalent values of the mandible. Oral Surg Oral Med Oral Pathol 1984; 58 : 610-6. https://doi.org/10.1016/0030-4220(84)90088-4
  11. Pascon EA, Introcaso JH, Langeland K. Development of predictable periapical lesion monitored by subtraction radiography. Endod Dent Traumatol 1987; 3 : 192-208. https://doi.org/10.1111/j.1600-9657.1987.tb00623.x
  12. Kullendorff B, Grondahl K, Rohlin M, Henrikson CO. Subtraction radiography for the diagnosis of periapical bone lesions. Endod Dent Traumatol 1988; 4 : 253-9. https://doi.org/10.1111/j.1600-9657.1988.tb00643.x
  13. Schwartz SF, Foster JK, Jr. Roentgenographic interpretation of experimentally produced bony lesions. I. Oral Surg Oral Med Oral Pathol 1971; 32 : 606-12. https://doi.org/10.1016/0030-4220(71)90326-4
  14. van der Stelt PF. Experimentally produced bone lesions. Oral Surg Oral Med Oral Pathol 1985; 59 : 306-12. https://doi.org/10.1016/0030-4220(85)90172-0
  15. Bianchi SD, Roccuzzo M, Cappello N, Libero A, Rendine S. Radiological visibility of small artificial periapical bone lesions. Dentomaxillofac Radiol 1991; 20 : 35-9. https://doi.org/10.1259/dmfr.20.1.1884851
  16. Marmary Y, Koter T, Heling I. The effect of periapical rarefying osteitis on cortical and cancellous bone. A study comparing conventional radiographs with computed tomography. Dentomaxillofac Radiol 1999; 28 : 267-71. https://doi.org/10.1038/sj.dmfr.4600453
  17. Lofthag-Hansen S, Huumonen S, Grondahl K, Grondahl HG. Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 103 : 114-9. https://doi.org/10.1016/j.tripleo.2006.01.001
  18. Hwang HJ, Kim GT, Choi YS, Hwang EH. Mandibular condyle position in cone beam computed tomography. Korean J Oral Maxillofac Radiol 2006; 35 : 103-9.
  19. Yokota ET, Miles DA, Newton CW, Brown CE, Jr. Interpretation of periapical lesions using RadioVisioGraphy. J Endod 1994; 20 : 490-4. https://doi.org/10.1016/S0099-2399(06)80045-2
  20. Kullendorff B, Nilsson M, Rohlin M. Diagnostic accuracy of direct digital dental radiography for the detection of periapical bone lesions: overall comparison between conventional and direct digital radiography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996; 82 :344-50. https://doi.org/10.1016/S1079-2104(96)80364-7
  21. Wenzel A. Effect of image enhancement for detectability of bone lesions in digitized intraoral radiographs. Scand J Dent Res 1988; 96 : 149-60.
  22. Kullendorff B, Nilsson M. Diagnostic accuracy of direct digital dental radiography for the detection of periapical bone lesions. II. Effects on diagnostic accuracy after application of image processing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996; 82 : 585-9. https://doi.org/10.1016/S1079-2104(96)80207-1
  23. Farman AG, Avant SL, Scarfe WC, Farman TT, Green DB. In vivo comparison of Visualix-2 and Ektaspeed Plus in the assessment of periradicular lesion dimensions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85 : 203-9. https://doi.org/10.1016/S1079-2104(98)90427-9
  24. Kim D, Chae YS, Kim SJ. High Content Cellular Analysis for Functional Screening of Novel Cell Cycle Related Genes, 2008 International Conference on BioMedical Engineering and Informatics, 2008. p.148-52.
  25. Grecca FS, Leonardo MR, da Silva LA, Tanomaru Filho M, Borges MA. Radiographic evaluation of periradicular repair after endodontic treatment of dog's teeth with induced periradicular periodontitis. J Endod 2001; 27 : 610-2. https://doi.org/10.1097/00004770-200110000-00002
  26. De Rossi A, Silva LA, Leonardo MR, Rocha LB, Rossi MA. Effect of rotary or manual instrumentation, with or without a calcium hydroxide/ 1% chlorhexidine intracanal dressing, on the healing of experimentally induced chronic periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005; 99 : 628-36. https://doi.org/10.1016/j.tripleo.2004.07.018
  27. Kakehashi S, Stanley HR, Fitzgerald RJ. The Effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol 1965; 20 : 340-9. https://doi.org/10.1016/0030-4220(65)90166-0
  28. Horiba N, Maekawa Y, Yamauchi Y, Ito M, Matsumoto T, Nakamura H. Complement activation by lipopolysaccharides purified from gramnegative bacteria isolated from infected root canals. Oral Surg Oral Med Oral Pathol 1992; 74 : 648-51. https://doi.org/10.1016/0030-4220(92)90360-3
  29. Yamasaki M, Nakane A, Kumazawa M, Hashioka K, Horiba N, Nakamura H. Endotoxin and gram-negative bacteria in the rat periapical lesions. J Endod 1992; 18 : 501-4. https://doi.org/10.1016/S0099-2399(06)81351-8
  30. Leonardo MR, Almeida WA, Ito IY, da Silva LA. Radiographic and microbiologic evaluation of posttreatment apical and periapical repair of root canals of dogs' teeth with experimentally induced chronic lesion. Oral Surg Oral Med Oral Pathol 1994; 78 : 232-8. https://doi.org/10.1016/0030-4220(94)90153-8
  31. Tanomaru Filho M, Leonardo MR, da Silva LA. Effect of irrigating solution and calcium hydroxide root canal dressing on the repair of apical and periapical tissues of teeth with periapical lesion. J Endod 2002; 28 : 295-9. https://doi.org/10.1097/00004770-200204000-00009
  32. Jansson L, Ehnevid H, Lindskog S, Blomlof L. Development of periapical lesions. Swed Dent J 1993; 17 : 85-93.
  33. Holland R, Otoboni Filho JA, de Souza V, Nery MJ, Bernabe PF, Dezan E, Jr. A comparison of one versus two appointment endodontic therapy in dogs' teeth with apical periodontitis. J Endod 2003; 29 :121-4. https://doi.org/10.1097/00004770-200302000-00009
  34. Jorge EG, Tanomaru-Filho M, Goncalves M, Tanomaru JM. Detection of periapical lesion development by conventional radiography or computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106 : e56-61.
  35. Sund T, Moystad A. Sliding window adaptive histogram equalization of intraoral radiographs: effect on image quality. Dentomaxillofac Radiol 2006; 35 : 133-8. https://doi.org/10.1259/dmfr/21936923
  36. Foracchia M, Grisan E, Ruggeri A. Luminosity and contrast normalization in retinal images. Med Image Anal 2005; 9 : 179-90. https://doi.org/10.1016/j.media.2004.07.001
  37. Kumasaka S, Kashima I. Initial investigation of mathematical morphology for the digital extraction of the skeletal characteristics of trabecular bone. Dentomaxillofac Radiol 1997; 26 : 161-8. https://doi.org/10.1038/sj.dmfr.4600230
  38. Muller R, Hahn M, Vogel M, Delling G, Ruegsegger P. Morphometric analysis of noninvasively assessed bone biopsies: comparison of highresolution computed tomography and histologic sections. Bone 1996;18 : 215-20. https://doi.org/10.1016/8756-3282(95)00489-0
  39. Mellish RW, Ferguson-Pell MW, Cochran GV, Lindsay R, Dempster DW. A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 1991; 6 : 689-96. https://doi.org/10.1002/jbmr.5650060706
  40. Hans D, Arlot ME, Schott AM, Roux JP, Kotzki PO, Meunier PJ. Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass?: a two-dimensional histomorphometric study. Bone 1995; 16 : 295-300. https://doi.org/10.1016/8756-3282(94)00041-7