[논문] - 비파괴검사학회지 Journal of the Korean Society for Nondestructive Testing Vol. 29, No. 2 (2009. 04)

증기발생기 전열관 균열깊이 평가기술

Depth-Sizing Technique for Crack Indications in Steam Generator Tubing

조찬희*[†], 이희종*, 김홍덕*

Chanhee Cho*[†], Heejong Lee* and Hongdeok Kim*

초 록 원자력발전소 증기발생기 전열관에 균열이 발생할 경우 해당 전열관을 관막음하여 안전하게 운영하고 있다. 만약 가동중검사시 균열 검출에 실패할 경우 전열관 파단사고와 같은 대형 사고로 이어질 수 있다. 증기발생기 전열관에는 여러 유형의 균열이 발생하고 있는데, 와전류검사로부터 균열이 확인된 경우 균열의 크기를 평가하여 전열관의 건전성을 평가하여야 한다. 그러나 균열의 깊이평가는 평가방법이 난해하여 평가 결과의 정확도 및 평가자 사이의 일관성이 떨어진다. 본 논문에서는 현재 사용되고 있는 균열깊이 평가방법 에 대한 정확도 및 일관성을 확인하고, 보다 신뢰성 있는 평가방법의 개발을 위하여 고리 1호기 구증기발생 기를 활용하였다. 국내 유자격 평가자들의 round robin test 결과를 통계적으로 분석하여 균열 유형별 최적의 평가방법을 도출하였다. 본 논문에서 제시된 균열깊이 평가기법은 국내 원전의 증기발생기관리프로그램에 활 용되어 원전의 신뢰성 향상에 기여할 것으로 기대된다.

주요용어: 균열깊이 평가, 와전류검사 데이터, 증기발생기 전열관

Abstract The nuclear power plants have been safely operated by plugging the steam generator tubes which have the crack indications. Tube rupture events can occur if analysts fail to detect crack indications during in-service inspection. There are various types of crack indication in steam generator tubes and they have been detected by the eddy current test. The integrity assessment should be performed using the crack-sizing results from eddy current data when the crack indication is detected. However, it is not easy to evaluate the crack-depth precisely and consistently due to the complexity of the methods. The current crack-sizing methods were reviewed in this paper and the suitable ones were selected through the laboratory tests. The retired steam generators of Kori Unit 1 were used for this study. The round robin tests by the domestic qualified analysts were carried out and the statistical models were introduced to establish the appropriate depth-sizing techniques. It is expected that the proposed techniques in this study can be utilized in the Steam Generator Management Program.

Keywords: Crack Depth Sizing, Eddy Current Data, Steam Generator Tube

1. 서 론

증기발생기 전열관에는 여러 유형의 균열이 발생 하고 있다. 대표적으로 내경 축균열(axial IDSCC), 외경 축균열(axial ODSCC), 내경 원주균열(circumferential IDSCC), 외경 원주균열(circumferential ODSCC)의 4가지 유형으로 분류할 수 있다. 증기 발생기관리프로그램(SGMP: steam generator management program)이 국내에 적용되기 이전까 지는 와전류검사로부터 균열이 검출되면 해당 전열

[접수일: 2009. 2. 24, 수정일: 3009. 3. 31, 게재확정일: 2009. 4. 3] *한국전력공사 전력연구원 원자력발전연구소, † Corresponding Author: Korea Electric Power Research Institute, Daejon 305-380, Korea (E-mail: chancho@kepri.re.kr) 관을 관막음 조치함으로써 검사 및 정비가 완료되 었으나, SGMP가 국내에 도입되면서 균열을 포함 한 모든 결함은 크기를 평가하여 해당 전열관의 건 전성평가를 수행하여야 한다. 그러나 균열의 깊이 평가는 평가방법의 어려움 때문에 체적성 결함에 비하여 결과의 정확성 및 일관성이 떨어진다. 따라 서 현재 사용되고 있는 균열깊이 평가방법에 대한 정확도를 평가하고, 보다 신뢰성 있는 평가방법을 개발하는 것이 필요하다.

본 논문에서는 균열깊이 평가방법을 개발하기 위 하여 고리 1호기 구증기발생기에 발생한 실제 자연 결함을 활용하였다. 기존의 정비이력을 검토하여 균열이 발생된 전열관을 분류하고 해당 전열관의 발관 가능성을 검토하였다. 이와 같은 과정을 거쳐 선정된 전열관에 대하여 관마개와 슬리브를 제거하 고, 와전류검사 데이터를 수집하였다. 와전류검사가 완료된 전열관은 예비평가를 거쳐 예상 균열위치가 포함되도록 절단과 발관 작업이 진행되었다. 발관 된 전열관에 대해서는 추가로 와전류검사 데이터를 수집하고 한국원자력연구원의 Hot Lab.으로 보내 져 파괴검사를 통한 균열의 정밀 분석작업이 이루 어졌다. 한편 관마개와 슬리브가 제거된 상태로 처 음 수집된 와전류검사 데이터를 round robin test 에 사용하였다. 균열 유형별로 평가 가능한 방법을 도출하고, 국내 유자격 평가자로 하여금 round robin test를 실시하여 그 결과를 통계적으로 분석 하였다. 통계적으로 가장 우수한 평가방법을 확인 할 수 있었으며, 본 연구 결과는 국내 증기발생기 관리프로그램에 활용될 수 있을 것으로 기대된다.

2. 증기발생기 전열관 비파괴검사

2.1. 검사대상 관 선정

비파괴평가 기법의 정확성을 가장 신뢰성 있게 분석하기 위해서는 실제 자연결함을 활용한 파괴분 석 결과를 활용하는 것이 바람직하다. 본 연구에서 는 많은 자연균열을 보유하고 있는 고리 1호기 구 증기발생기(Kori Unit 1 retired steam generator)를 활용하여 검사대상 관을 선정하였다[1]. 본 연구에 사용된 고리 1호기 구증기발생기 A의 정비 현황이 Fig. 1에 나타나 있다. Fig. 1에 나타나 있는 증기발 생기 A의 경우 총 3,388개 전열관 중 결함 발생 혹 은 예방조치로 347개의 관막음과 488개의 고온관이

슬리브 정비되었다. 가동중에 균열이 검출된 경우 에는 대체로 전열관을 정비하였을 뿐만 아니라 균 열이 집중적으로 발생하는 부위는 많은 전열관을 예방 슬리브 하였다. 따라서 정비된 전열관에 대한 와전류검사 신호를 수집하기 위해서는 관막음 또는 슬리브를 제거하여야 한다.

정비 이력이 있는 158개의 정비관을 포함하여 700개의 전열관을 검사대상 관으로 선정하였으나, 관마개와 슬리브 제거가 불가능한 52개 전열관과 해당 증기발생기가 옆으로 뉘어져 있어 검사가 용 이치 않은 91개 전열관은 제외되었다. 균열 검출용 으로 가장 많이 사용되는 MRPC(motorized rotating pancake coil) 탐촉자를 사용하여 신호를 수집 하였다. 검사에 사용된 MRPC 탐촉자 및 MRPC 탐촉자를 사용하여 수집한 와전류검사 데이터의 예 를 Fig. 2에 나타내었다.

MRPC 탐촉자는 증기발생기 전열관의 관판상단 (TTS: top of tubesheet) 확관천이 영역과 같이 기 하학적 형상이 복잡한 영역이나 또는 곡률반경이 작은 전열관의 곡관부위(U-bend)에 발생하는 균열

을 검출하기 위해 주로 사용된다.

2.2. 전열관 파괴검사

검사대상 관으로 선정된 전열관은 이미 정비된 전열관의 경우 관막음 혹은 슬리브를 제거한 후 발 관 전에 MRPC 탐촉자를 사용하여 신호를 수집하 였다. 신호수집 데이터의 예비평가를 통하여 균열 의 위치를 확인하고, 확인된 균열이 포함되도록 TTS의 경우 상단 5", 하단 3", 그리고 관지지판 (TSP: tube support plate)의 경우 상단 2", 하단 2" 영역을 절단하여 발관하였다. 와전류검사 및 발관 작업은 한전KPS에서 담당하였다. 발관된 전열관은 다시 MRPC 탐촉자를 사용하여 신호를 수집한 후 한국원자력연구원 내의 Hot Lab.으로 이송되어 파 괴검사가 진행되었다. 발관된 이후의 MRPC 데이 터는 전력연구원에서 정밀 평가하여 균열의 위치정 보를 제공하였으며, 한국원자력연구원은 제공된 위 치정보를 기반으로 파괴검사를 수행하였다. 파괴검 사를 통하여 유형별 균열의 깊이 및 길이 데이터베 이스를 확보하였으며, 그 결과를 본 연구의 ground truth로 활용하였다. 파괴검사 결과의 예를 Fig. 3 에 나타내었다.

3. 현행 균열깊이 평가기술

증기발생기 전열관에 발생하는 균열 유형에 대해 현재 적용가능한 균열깊이 평가기술은 Table 1과 같다. 내경 축균열의 경우 EPRI ETSS #96703.1을 적용하고 있다[2]. 이 방법은 덴트 부위에 발생한 내경 축균열에 적용하도록 개발되었으나, 발생위치 에 관계없이 폭 넓게 사용하고 있다. 평가에 사용

Fig. 3 Example of destructive examination result

Table 1 Currently used crack-sizing techniques

균열유형	적용문서	적용기법	평가 Liz
ID Axial	EPRI ETSS #96703.1	Phase Curve	Circ. Liz
OD Axial	OD Axial CEOG-1151		Main Liz
ID Circ.	EPRI ETSS #96701.1	Amplitude Based on Max Depth Phase	Axial Liz
OD Circ.	EPRI TR- 107197-P1	Phase Curve	Axial Liz

되는 보정곡선은 100%, 60%, 40% ID axial notch 의 위상각(phase angle)을 사용하며, 300 kHz Cscan의 Circ. Lissajous(Liz)에서 깊이를 평가한다. 외경 축균열의 경우는 미국 웨스팅하우스 보고서 [3]를 적용하여 평가한다. 이 방법은 free span 외 경 축균열의 크기평가를 위해 이전에 개발된 방법 (CEOG task 958)에 미국 Song 발전소 2호기 등에 서 발관한 전열관의 파괴분석 결과를 추가하여 웨 스팅하우스가 개발한 방법이다. 100%, 60%, 40% OD axial notch의 진폭(amplitude) 보정곡선을 사 용하여 300 kHz main Liz에서 평가한다. 내경 원 주균열은 EPRI ETSS #96701.1을 적용하여 평가하 고 있다[4]. 이 방법 역시 확관 천이영역에 발생하 는 내경 원주균열을 대상으로 적용하도록 개발되었 으나, 발생위치에 관계없이 광범위하게 사용하고 있다. 보정곡선은 100%, 60%, 40% ID Circ. notch 의 위상각 곡선을 axial Liz에 작성하여, 실제 평가 대상 데이터의 가장 큰 신호의 진폭과 그에 해당하 는 깊이를 사용하여 1 point wear scar 보정곡선을 추가로 작성한다. 평가는 300 kHz C-scan axial Liz 에서 평가한다. 외경 원주균열의 경우는 EPRI TR-107197-P1 보고서를 적용하여 평가하고 있다[5]. 이 방법은 100%, 60%, 40% OD Circ. notch의 위 상각 보정곡선을 사용하여 300 kHz의 C-scan axial Liz에서 평가를 하고 있다.

4. Round Robin Test

현재 사용하고 있는 균열깊이 평가방법의 신뢰성 을 확인하고, 보다 정확한 평가방법의 개발을 위하 여 평가결과에 영향을 줄 수 있는 인자를 도출하 고, round robin test에 사용할 평가방법을 균열 유 형별로 Table 2~Table 4와 같이 확정하였다. 특히 OD axial의 경우는 위상각이 잡음(noise)과 확연히 구분되는 관계로 main Liz와 C-scan 상의 Circ. Liz 상에서의 평가가 거의 동일함이 확인되어 평가 방법에 대한 경우의 수를 축소할 수 있었다. 4가지 균열 유형에 대한 round robin test를 수행하여 결 과를 분석하였으나 외경 원주균열의 경우 슬러지, 기하학적 영향 등 몇 가지 인자가 신호에 많은 영 향을 끼쳐 신뢰할만한 통계 결과를 얻지 못했다[1]. 따라서 본 논문에서는 외경 원주균열의 round robin test 결과는 제외하였다.

Round robin test를 위하여 EPRI QDA (qualified data analyst) 자격을 보유한 국내 유자 격자를 대상으로 10개의 팀을 구성하였다. 각 팀은 2명으로 구성되어 1명은 주어진 평가지침서에 따라 최초평가를 수행하고, 다른 1명은 평가결과를 검토

Table 2 OD axial depth-sizing methods used in the round robin tests

평가 채널	주파수 (kHz)	보정곡선	보정점 (%)	평가 Liz
P1	400	진폭	100, 60, 40	Main Liz
P2	400	진폭	100, 60, 20	Main Liz
P3	300	진폭	100, 60, 40	Main Liz
P4	300	진폭	100, 60, 20	Main Liz
P5	400	위상각	100, 60, 40	Main Liz
P6	300	위상각	100, 60, 40	Main Liz

Table 3 ID Axial depth-sizing methods used in the round robin tests

평가 채널	주파수 (kHz)	보정곡선	보정점 (%)	평가 Liz
P1	400	진폭	100, 60, 20	Circ. Liz
P2	300	진폭	100, 60, 20	Circ. Liz
P3	300	진폭	100, 60, 40	Circ. Liz
P4	400	위상각	100, 60, 20	Circ. Liz
P5	300	위상각	100, 60, 20	Circ. Liz
P6	300	위상각	100, 60, 40	Circ. Liz
P7 300		최대깊이 위상각-진폭	1point wear scar	Circ. Liz
P8	400	진폭	100, 60, 20	Main Liz
PQ				
1.2	300	진폭	100, 60, 20	Main Liz
P10	300 300	진폭 진폭	100, 60, 20 100, 60, 40	Main Liz Main Liz
P10 P11	300 300 400	진폭 진폭 위상각	100, 60, 20 100, 60, 40 100, 60, 20	Main Liz Main Liz Main Liz
P10 P11 P12	300 300 400 300	진폭 진폭 위상각 위상각	100, 60, 20 100, 60, 40 100, 60, 20 100, 60, 20	Main Liz Main Liz Main Liz Main Liz

하여 이견이 있을 경우 최초 평가자와의 협의를 거 쳐 각 팀별 최종평가 결과를 확정하도록 하였다. 각 팀별 비파괴평가 결과와 파괴검사 결과를 통계 적 분석방법으로 상호 비교하여 현재의 평가방법과 제안된 평가방법의 신뢰도를 비교 검토하였다.

Table 4 ID Circ. depth-sizing methods used in the round robin tests

평가 채널	주파수 (kHz)	보정곡선	보정점 (%)	Filter 사용 유무
P1	400	진폭	100, 60, 40	No
P2	300	진폭	100, 60, 20	No
P3	300	진폭	100, 60, 40	No
P4	400	위상각	100, 60, 40	No
P5	300	위상각	100, 60, 20	No
P6	300	위상각	100, 60, 40	No
P7	300	최대깊이 위상각-진폭	1point wear scar	No
P8	400	진폭	100, 60, 40	Yes
P9	300	진폭	100, 60, 20	Yes
P10	300	진폭	100, 60, 40	Yes
P11	400	위상각	100, 60, 40	Yes
P12	300	위상각	100, 60, 20	Yes
P13	300	위상각	100, 60, 40	Yes
P14	300	최대깊이 위상각-진폭	1point wear scar	Yes

5. 결과 분석

Round robin test의 결과를 분석하기 위하여 다 음과 같은 통계모델을 설정하였다[1]. 비파괴검사를 이용한 균열깊이 평가 성능을 검증하기 위해 균열 의 깊이에 대한 비파괴평가 결과와 Hot Lab.으로 부터의 파괴분석 결과를 아래의 관계식으로부터 분 석하였다.

$$V_R = a_0 + a_1 V_M + Z_E s_E$$
 (1)

 V_R = true structural size

 V_M = NDE measured size

- a₀, a₁ = parameters in linear regression
- s_E = regression error in the relationship between structural size and NDE measured size
- Z_E = random variable from standard normal distribution

식 (1)로 나타낸 비파괴평가의 불확실성은 신호

해석에서 발생하는 불확실성과 비파괴평가 기법 (NDE technique)의 한계에 따른 불확실성으로 나 눌 수 있다. 따라서 식 (1)은 다음과 같이 평가자에 따른 관계식(analyst relationship) (2)와 평가기법에 따른 관계식(technique relationship) (3)으로 나누어 표현할 수 있다.

$$V_T = b_0 + b_1 V_M + Z_T s_T$$
(2)

- V_T: technique size
- V_M: NDE measured size
- b₀, b₁ = parameters in linear regression
- s_T = regression error in analyst relationship

$$V_{R} = c_{0} + c_{1} V_{T} + Z_{R} s_{R}$$
(3)

 V_R : real size(true structural size)

- c_0 , c_1 = parameters in linear regression
- s_R = regression error in technique relationship

$$V_R = c_0 + c_1 b_0 + c_1 b_1 V_M + c_1 Z_T s_T + Z_R s_R \quad (4)$$

$$\begin{split} & a_0 = c_0 + c_1 b_0 \\ & a_1 = c_1 b_1 \\ & s_E = \sqrt{(c_1 s_T)^2 + s_R^2} \end{split}$$

Round robin test 결과를 위의 통계모델에 적용 하여 균열 유형에 따른 각 평가 방법별 결정계수 (r²)와 RMSE(root mean square error)를 Table 5~ Table 7, Fig. 4~Fig. 6에 나타내었다.

Table 5 Depth-sizing results for OD axial

평가 채널	a_0	a ₁	r ²	RMSE
P1	14.399	0.980	0.760	8.347
P2	21.960	0.871	0.786	7.900
P3	12.124	1.003	0.759	8.420
P4	19.435	0.926	0.843	6.871
P5	14.306	0.851	0.428	13.176
P6	13.815	0.870	0.404	13.673

Fig. 4 Depth-sizing results for OD axial

평가 채널	a_0	a ₁	r ²	RMSE
P1	62.202	0.673	0.372	11.982
P2	64.411	0.585	0.302	12.421
P3	76.087	0.389	0.379	9.467
P4	12.322	0.878	0.635	9.126
P5	29.703	0.667	0.354	12.146
P6	29.695	0.663	0.370	12.001
P7	39.486	0.538	0.260	13.002
P8	62.017	0.649	0.349	11.694
P9	62.017	0.649	0.349	11.964
P10	77.504	0.324	0.245	10.983
P11	12.725	0.879	0.644	8.848
P12	23.159	0.759	0.494	10.546
P13	25.976	0.726	0.515	10.321

Fig. 5 Depth-sizing results for ID axial

평가 채널	a_0	a ₁	r ²	RMSE
P1	40.657	0.895	0.776	9.684
P2	22.497	1.194	0.830	9.008
P3	38.287	0.920	0.809	9.079
P4	25.738	0.639	0.593	13.952
P5	11.252	0.808	0.641	13.109
P6	11.993	0.784	0.633	13.239
P7	18.840	0.714	0.572	14.307
P8	51.071	0.713	0.707	7.552
P9	30.350	1.075	0.881	7.547
P10	46.299	0.786	0.746	7.380
P11	13.288	0.731	0.470	15.913
P12	14.827	0.706	0.498	15.496
P13	16.621	0.672	0.441	16.347
P14	12.310	0.819	0.662	12.712

Table 7 Depth-sizing results for ID Circ.

6. 결 론

본 연구에서는 원전 증기발생기 전열관에 발생하 는 균열깊이 평가방법을 개발하기 위하여 고리 1호 기 구증기발생기를 활용한 대규모의 round robin test를 수행하였다. 4개의 균열유형에 대하여 분석 한 결과 외경 원주균열에 대해서는 통계적으로 의 미있는 결과를 얻지 못하였다. 나머지 3개 유형의 균열 최대깊이 평가에 대해서는 다음과 같은 결론 을 얻을 수 있었다.

- 외경 축균열의 경우 기존 평가방법인 P3보다 P4 방법이 가장 우수한 평가방법으로 나타났 다. 이는 기존의 방법에 비하여 보정곡선을 구 성하는 보정점으로 100%, 60%, 20% OD axial notch를 사용하는 것이 효과적임을 의미한다.
- 내경 축균열의 경우에는 기존의 P6 방법에 비 해 P4와 P11 방법이 비교적 우수한 것으로 분 석되었으며, 이는 기존의 방법에 비해 주파수 300 kHz 대신 400 kHz 신호를 이용하여 평가 하는 것이 보다 바람직한 것으로 나타났다.
- 3) 내경 원주균열의 경우 기존의 평가방법인 P7보 다 P9 방법을 선택하여 진폭 보정곡선에 필터 를 사용함으로서 보다 정확한 균열의 최대깊이 를 평가할 수 있을 것으로 판명되었다. P10 방 법은 P9 방법에 비하여 RMSE는 약간 작지만 결정계수(r²)가 비교적 크게 떨어져 P9 방법보 다 통계적 우수성은 떨어진다고 볼 수 있다.

이상과 같은 균열 유형별 깊이평가 기법은 국내 증기발생기관리프로그램의 건전성평가에 활용될 수 있을 것으로 기대된다.

참고문헌

- [1] 정한섭, 김홍덕, 조찬희, "고리 1호기 구증기발 생기 자연 결함 와전류탐상검사 Round Robin 프로그램", 최종보고서 TR.J05.C2008.0521, 전력 연구원, (2008)
- [2] EPRI, "Performance demonstration database: Appendix A, examination technique specification sheet ETSS #96703.1," Rev. 10, (2001)
- [3] WEC, "Plus-point coil sizing study for axial crack profiling, Report No. 00-TR-FWS-023," Rev. 01, (2001)
- [4] EPRI, "Performance demonstration database: Appendix A, examination technique specification sheet ETSS #96701.1," Rev. 7, (2001)
- [5] EPRI, "Depth-based structural analysis methods for steam generator circumferential indications," EPRI TR-107197-P1, (1997)