Inhibitory Effect of Deer Antler on Osteoclastic Bone Resorption

파골세포의 골 흡수에 미치는 녹용의 억제효과

  • Kim, Yun-Kyung (Department of Oriental Pharmacy, School of Pharmacy, School of Medicine, Wonkwang University) ;
  • Choi, Yun-Hong (Department of Anatomy, School of Medicine, Wonkwang University) ;
  • Song, Jeong-Hoon (Department of Plastic Surgery, School of Medicine, Wonkwang University) ;
  • Jang, Sung-Jo (Department of Neurosurgery, School of Medicine, Wonkwang University) ;
  • Kim, Hyun-Jung (Department of Internal Medicine, School of Medicine, Wonkwang University) ;
  • Lee, Chang-Hoon (Department of Internal Medicine, School of Medicine, Wonkwang University) ;
  • Ahn, Ho-Seon (Department of Internal Medicine, School of Medicine, Wonkwang University) ;
  • Lee, Ji-Eun (Department of Internal Medicine, School of Medicine, Wonkwang University) ;
  • Kim, Jeong-Joong (Department of Anatomy, School of Medicine, Wonkwang University) ;
  • Choi, Min-Kyu (Department of Anatomy, School of Medicine, Wonkwang University)
  • 김윤경 (원광대학교 약학대학 한약학과) ;
  • 최윤홍 (원광대학교 약학대학 의과대학 해부학교실) ;
  • 송정훈 (원광대학교 약학대학 성형외과학교실) ;
  • 장성조 (원광대학교 약학대학 신경외과학교실) ;
  • 김현정 (원광대학교 약학대학 내과학교실) ;
  • 이창훈 (원광대학교 약학대학 내과학교실) ;
  • 안선호 (원광대학교 약학대학 내과학교실) ;
  • 이지은 (원광대학교 약학대학 내과학교실) ;
  • 김정중 (원광대학교 약학대학 의과대학 해부학교실) ;
  • 최민규 (원광대학교 약학대학 의과대학 해부학교실)
  • Published : 2009.12.25

Abstract

We have previously shown that water extract of deer antler (WEDA) inhibited RANKL-mediated osteoclast differentiation from bone marrow macrophages by suppressing c-Fos and NFATc1 expression. Thus, we examined the effect of WEDA in inflammation-induced bone loss in vivo. Here we found that WEDA inhibited osteoblast-supported osteoclast differentiation induced by lipopolysaccharide (LPS). However, WEDA did not suppress the expression of receptor activator of NF-${\kappa}B$ ligand (RANKL) in response to LPS in osteoblasts. WEDA also inhibited the bone resorptive activity of mature osteoclasts. To examine the effect of WEDA on bone loss, when LPS injected subcutaneously in mice, bone loss was greatly increased, but WEDA treatment inhibited LPS-mediated bone loss. Taken together, we conclude that WEDA inhibited osteoclast differentiation and bone resorption in vitro and in vivo. Thus WEDA may be useful in the treatment of bone-related disorders.

Keywords

References

  1. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin, T.J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20: 345-357, 1999 https://doi.org/10.1210/er.20.3.345
  2. Teitelbaum, S.L., Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4: 638-649, 2003 https://doi.org/10.1038/nrg1122
  3. Boyle, W.J., Simonet, W.S., Lacey, D.L. Osteoclast differentiation and activation. 423: 337-342, 2003
  4. Tolar, J., Teitelbaum, S.L., Orchard, P.J. Osteopetrosis. N. Engl. J. Med. 351: 2839-2849, 2004 https://doi.org/10.1056/NEJMra040952
  5. Yagi, M., Miyamoto, T., Toyama, Y., Suda, T. Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells. J. Bone Miner. Metab. 24: 355-358, 2006 https://doi.org/10.1007/s00774-006-0697-9
  6. Fuller, K., Wong, B., Fox, S., Choi, Y., Chambers, T.J. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. J. Exp. Med. 188: 997-1001, 1998 https://doi.org/10.1084/jem.188.5.997
  7. Kong, Y.Y., Yoshida, H., Sarosi, I., Tan, H.L., Timms, E., Capparelli, C., Morony, S., Oliveira-dos-Santos, A.J., Van, G., Itie, A., Khoo, W., Wakeham, A., Dunstan, C.R., Lacey, D.L., Mak, T.W., Boyle, W.J., Penninger, J.M. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 397: 315-323, 1999 https://doi.org/10.1038/16852
  8. Sato, N., Takahashi, N., Suda, K., Nakamura, M., Yamaki, M., Ninomiya, T., Kobayashi, Y., Takada, H., Shibata, K., Yamamoto, M., Takeda, K., Akira, S., Noguchi, T., Udagawa, N. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. J. Exp. Med. 200: 601-611, 2004 https://doi.org/10.1084/jem.20040689
  9. Kanematsu, M., Sato, T., Takai, H., Watanabe, K., Ikeda, K., Yamada, Y. Prostaglandin E2 induces expression of receptor activator of nuclear factor-kappa B ligand/osteoprotegrin ligand on pre-B cells: implications for accelerated osteoclastogenesis in estrogen deficiency. J. Bone Miner. Res. 15: 1321-1389, 2000 https://doi.org/10.1359/jbmr.2000.15.7.1321
  10. Tsukii, K., Shima, N., Mochizuki, S., Yamaguchi, K., Kinosaki, M., Yano, K., Shibata, O., Udagawa, N., Yasuda, H., Suda, T., Higashio, K. Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochem. Biophys. Res. Commun. 246: 337-341, 1998 https://doi.org/10.1006/bbrc.1998.8610
  11. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7: 292-304, 2007 https://doi.org/10.1038/nri2062
  12. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3: 889-901, 2002 https://doi.org/10.1016/S1534-5807(02)00369-6
  13. Kim, K., Kim, J.H., Lee, J., Jin, H.M., Lee, S.H., Fisher, D.E., Kook, H., Kim, K.K., Choi, Y., Kim, N. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J. Biol. Chem. 280: 35209-35216, 2005 https://doi.org/10.1074/jbc.M505815200
  14. Lloyd, M. Treatment of postmenopausal osteoporosis. N. Engl. J. Med. 338: 736-746, 1998 https://doi.org/10.1056/NEJM199803123381107
  15. Rodan, G.A., Martin, T.J. Therapeutic approaches to bone disease. Science. 289: 1508-1514, 2000 https://doi.org/10.1126/science.289.5484.1508
  16. Kwak, H.B., Yang, D., Ha, H., Lee, J.H., Kim, H.N., Woo, E.R., Lee, S., Kim, H.H., Lee, Z.H. Tanshinone IIA inhibits osteoclast differentiation through down-regulation of c-Fos and NFATc1. Exp. Mol. Med. 38: 256-264, 2006 https://doi.org/10.1038/emm.2006.31
  17. Park, C.K., Kim, H.J., Kwak, H.B., Lee, T.H., Bang, M.H., Kim, C.M., Lee, Y., Chung, D.K., Baek, N.I., Kim, J., Lee, Z.H., Kim, H.H. Inhibitory effects of Stewartia koreana on osteoclast differentiation and bone resorption. Int. Immunopharmacol. 7: 1507-1516, 2007 https://doi.org/10.1016/j.intimp.2007.07.016
  18. Li, Y.J., Kim, T.H., Kwak, H.B., Lee, Z.H., Lee, S.Y., Jhon, G.J. Chloroform extract of deer antler inhibits osteoclast differentiation and bone resorption. J. Etnopharmacol. 113: 191-198, 2007 https://doi.org/10.1016/j.jep.2007.04.020
  19. Kwak, H.B., Kim, J.H., Kim, D.J., Kwon, Y.M., Oh, J., Kim, Y.K. Effect of water extract of deer antler in osteoclast differentiation. Korean J. Oriental Physiology & Pathology. 22: 891-895, 2008
  20. Kwak, H.B., Choi, M.K. Inhibitory mechanism of curcumin in osteoclast differentiation. Korean J. Oriental Physiology & Pathology. 22: 796-501, 2008
  21. Jung, Y.T., Choi, Y.H., Song, J.H., Lee, C.H.. Lee, M.S., Jang, S.J., Cho, H.J., Kwak, H.B., Oh, J. Effect of water extract of eucommiae cortex in RANKL-induced osteoclast differentiation. Korean J. Oriental Physiology & Pathology. 23: 613-618, 2009
  22. Cho, H.J., Choi, M.K., Kim, J.J., Le, Y., Song, J.H., Lee, M.S., Lee, C.H., Jang, S.J., Kwak, H.B., Oh, J. Effect of water extracts of ccuscuta japonica chois in RANKL-induced osteoclast differentiation. Korean J. Oriental Physiology & Pathology. 23: 860-865, 2009
  23. Kim, Y.K., Kim, K.S., Chung, K.H., Kim, J.G., Kim, K.S., Lee, Y.C., Chang, Y.C., Kim, C.H. Inhibitory effects of deer antler aqua-acupuncture, the pilose antler of Cervus Korean TEMMINCK var mantchuricus Swinhoe, on type II collagen-induced arthritis in rats. Int. Immunopharmacol. 3: 1001-1010, 2003 https://doi.org/10.1016/S1567-5769(03)00098-5
  24. Zou, W., Bar-Shavit, Z. Dual modulation of osteoclast differentiation by lipopolysaccharide. J. Bone Miner. Res. 17: 1211-1218, 2002 https://doi.org/10.1359/jbmr.2002.17.7.1211
  25. Karsdal, M.A., Henriksen, K., Arnold, M., Christiansen, C. Calcitonin: a drug of the past or for the future? Physiologic inhibition of bone resorption while sustaining osteoclast numbers improves bone quality. BioDrugs. 22: 137-144, 2008 https://doi.org/10.2165/00063030-200822030-00001
  26. Lee, S.U., Park, S.J., Kwak, H.B., Oh, J., Min, Y.K., Kim, S.H. Anabolic activity of ursolic acid in bone: Stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. Pharmacol. Res. 58: 290-296, 2008 https://doi.org/10.1016/j.phrs.2008.08.008